A Label Geometry Image Filter
for Multiple Object Measurement !

Release 0.00
Dirk Padfield, James Miller

August 14, 2008

GE Global Research, One Research Circle, Niskayuna, NY)9423
{padfield,millerj} @research.ge.com

Abstract

The itkLabelGeometrylmageFilter is a new ITK filter that bles the measurement of geometric
features of labeled objects. It calculates features sinlahe “regionprops” command of Matlab. It
is related to the itkLabelStatisticsimageFilter in thattbfilters measure features of labeled masks. It
differs, however, in that it measures geometric featureb@fobjects themselves rather than statistics
of image intensities under the masks defined by the objetiis. document describes the mathematical
background of the geometric features measured by this &ittdrdescribes the framework of the code,
which is structured to enable easy expandability as newcbfgatures are desired.

Contents

1 Introduction 2

2 Image Moments 2

3 Hyper-Ellipsoid Fitting 6
3.1 Covariance Matrix (ND) e 7
3.2 Eigenvalues and Eigenvectors (ND). 7

4 Calculated Obiject Features 8
4.1 VMolume and Centroid (ND) e 8
4.2 AxesLengths (ND). e e 8
4.3 Eccentricity (2D) e e 8
4.4 Elongation (2D). e e e e 8
4.5 Object Orientation (2D) e 8
4.6 Bounding Box (ND) e e 9
4.7 Oriented Bounding Box Vertices (ND). 9
4.8 Oriented Image Region (ND). i i e 9

1This work is part of the National Alliance for Medical Image@puting (NAMIC), funded by the National Institutes of Hesml
through the NIH Roadmap for Medical Research, Grant U54 BRB@0. Information on the National Centers for Biomedical
Computing can be obtained from http://nihroadmap.nilVlgjoinformatics.

5 Implementation 10
5.1 Implementation Structure. e 10
5.2 Inputs and Feature Accessor Methods Lo 11

6 Conclusions 12

1 Introduction

The itkLabelGeometrylmageFilter enables the measureofeyggometric features of all objects in a labeled
ND volume. This labeled volume can represent, for instaacmedical image segmented into different
anatomical structures or a microscope image segmentethofitedual cells. The measurement of various
geometric features of these objects can provide additiosajht into the image.

This filter is closely related to the itkLabelStatisticsige&ilter, which measures statistics of image regions
defined by a labeled mask such as min, max, and mean intengéysity standard deviation, and bounding
boxes. The itkLabelGeometrylmageFilter, however, messtinie geometry of the labeled regions them-
selves. It measures features similar to the “regionpropgimand of Matlab. The set of measurements that
it enables along with their definitions are given in TableThe first set of features in this table are based
solely on the labeled mask itself, whereas the second shiding the integrated intensity and the weighted
centroid, are measured on an intensity image under theeldlmeblsk. While the majority of features are
measured in ND, some are restricted to 2D by definition (tlaeseexplicitly marked as 2D). Much of the
notation this table and other Sections is given in 2D for tital simplicity. The definitions and their
derivations are given in greater detail in SectidnsThe features listed in this table represent the set of
currently calculated features, but the framework of therfik designed so that it can be easily expanded to
measure a wide variety of other features. For example, sirecealculation of the eigenvalues/eigenvectors
and covariance matrices are already implemented, thessunesacan be used as the basis for other relevant
calculations.

The rest of this paper is organized as follows. Most of theufes currently implemented are based on image
moments, so SectioAgives an overview of the relevant mathematical equatioesti@& 3 introduces the
framework of calculations based on a hyper-ellipsoid fittethe data, and Sectighdescribes in detail the
calculation of the object features. Secti®describes some implementation details of the filter ang trss
feature accessor methods currently available. Finallgti®®6 lists the conclusions.

2 Image Moments

Image moments are particular averages of either binaryctsbj@inweighted) or their pixel intensities
(weighted). They are useful to describe objects and formbthikeling blocks of many useful features of
the objects. The definitions below are mostly given for 2Deoty but can be directly extended to ND.

For a 2D continuous functiofi(x,y), the raw moment of ordeip(q) is defined as
Mp.q = /7 /7 xPyIf(x,y)dxdy 1)

wherex andy are indices of the first and second dimensions of the funciibe discrete counterpart of this

Table 1: Definitions of label geometry features. For the shape features, themplicit in the equations
represents a binary value set to 1 inside the object and @eutsor the shape & intensity features, the
represents an intensity value inside the object and 0 autgitl features are calculated in ND except those
listed as otherwise. Notational clarifications and expdraiinitions are given in Sectigh

Feature Name | Definition
Shape Features (I = binary)
\Volume Moo
. Mio Mm]
Centroid — =
[Moo Moo
Eigenvalues A, A2, AN
Eigenvectors Y Vi ... W]
Axes length 4./Ai, 1=0,...,.D-1
Eccentricity (2D) A1=Ao
A1
Elongation (2D) ot
Ao -
Orientation (2D) tan ! <E(1)
vi(0)
Bounding box [min(X), max(X), min(Y), max(Y), ...]
Bounding box volume (max(X)-min(X)+1) * (max(Y)-min(Y)+1) * ...
Bounding box size [(max(X)-min(X)+1), (max(Y)-min(Y)+1), ...]

Oriented bounding box verticgsBounding box along the major axis of the object
Oriented bounding box volumeé Bounding box volume in rotated space
Oriented bounding box size | Bounding box size in rotated space

Rotation matrix Eigenvectors organized to obey right-hand rule
Shape & Intensity Features (I = intensity)
Integrated Intensity Moo

Weighted centroid

{% %}
Moo’ Moo

function is
Y-1X-1

Mpq = y; X;) Xyl (x,y) (2)

wherel is the discrete image (weighted or unweighted).

Central moments are translationally invariant versionghefraw moments. This is achieved by subtract-

ing the centroid[w, w] of the function from the indices. For a 2D continuous funetithe central
oo Moo
moments are defined as o o
wa= | [(x=%Ply-)9 (x y)dxdy ©
and the discrete version is
Y—1X-1
Hpg = (X=X)P(y =y (xy) (4)
=2 2

Rather than calculating the raw and central moments s@barfar an image, the central moments can be
directly derived in terms of the raw moments. For exampl&Dn

Moo = Moo (5)
Ho1 =0 (6)
Mo=0 (7)
M11 = M11 —XMo1 = M11 —YMio (8)
Moo = M2o —XMyg 9)
Ho2 = Mo2 — YMo1 (10)

Note that the commas separating thendq have been dropped for notational simplicity. The proof ekt
identities for one first order momenp & 0 ,g= 1), one second order cross momemt{ 1 ,g= 1), and one
second order momenp& 2 ,q = 0) for the continuous case are given below.

bor= [[(=R°y=9)Mxy)dxdy= [[yfxy)axay-y [[1cy)dxdy

M
= Mo1—YMoo = Mo1 — M—01M00 =0 (11)
00

pia= [[(x=RHy=9) f(xy)axdy= [[xy—=y-x+%<9) 1 (cy)dxdy

://xyf(x,y)dydy—X//yf(x,y)dxdy—y//xf(x,y)dxderX*y// f(x,y)dxdy

M M MioM
=Mi1— — Moz — —2Mio+ — 2 2 Moo = M1 — XMo1 = M1 — YM 10 (12)
Moo Moo Moo Moo

o= [[(x=R2(y-9f(xy)axdy= [[(¢—2%+3)f(xy)dxdy

://xzf(x,y)dxdy—2X//xf(x,y)dxdy+>‘<2//f(x,y)dxdy

M1o Mio\ 2
= Mo —2—Mjp+ (—) Moo =M20—XM1g (13)
Moo Moo

The rest of the equations above follow from similar derivas.

A patrticularly useful form of moments are the normalizedosetorder central moments. In 2D, these are
given by

Mo _Mx

= = 14
Moo oo Moo (14)
/ Moz Mo _
Moz oo Moo y2 (15)
/ Hir Mo
= —— = —" —Xx% 16
M1 oo Moo y (16)

The covariance matrix consists of the normalized secondrareintral moments organized as entries in a
matrix. In 2D, this becomes

[p-:20 p-gl_l :| (17)
M1 Moz

This can be generalized to ND. Regardless of the dimensawh entry in this matrix represents the prod-
uct of two elements (hence, it is second order). The dimanBi@f the moment determines the matrix
size as D*D. To generalize to ND, we introduce the notatify (vi,Vs,...,vy) for raw moments and
C'N(V1,Va, ...,wy) for normalized central moments, whebeis the dimension is the order, and the values
in the parentheses separated by commas represent thesindittee dimensions that are turned on (thus,
the number of values must be equalNy. For exampley, in the previous notation ig’3(), and Wy,

is 5’3(1, 1). This notation is more convenient for ND because it doesduire the explicit listing of a
subscript value for each dimension a3, in 3D. This notation is used in Algorithm 1 to calculate the
normalized second order central moments.

Algorithm 1 ND Normalized Second Moment Calculation.D = image dimension. N = moments order.
1: for i=0:D-1do
2. for j=0:D-1do
D

o MP(L) MP() MP())
3: C/D |7J — 2 _ 1 * 1
200" a0 w0 0
4 if i==j then
. . 1
5 C’_E’(I,J)zC’?(I,JHl—Z
6: end if
7 end for
8: end for

Since the resulting matrix is symmetric, in practice onlif b&the values need to calculated.

This algorithm simplifies the task of calculating secondeorchoments in ND. Using this algorithm, the
covariance matrix of the normalized second order centraherds becomes (using the simpler notation
using subscript indices)

Mi10 Moo Hous (18)

/ / /
Hooo Mi10 Moz

/ / /
Mio1 Ho1r Mooz

Notice in line 5 of Algorithm 1 that a constant is added whethtmements of the second order moment are
the same. This constant represents the normalized secdedaantral moment of a pixel. This is required
because the measurements are based on discrete pixelsthathecontinuous values. The normalized
second order central moment of a pixel with unit length ofreaby image can be found as (whgreneans

a pixel)

0 Jo 0 |: 0 0
Mo(p) = [[eebxay= [%xﬂ -3
- Mio(p) 1 Mo(p)
X(p) Moo(p) 2 Moo(p) =y
1s(P) =]~ X(P)3(p) =0 (19
boo(P) = msggg; ~%(p) = %2 (20)

. 1 . .
Thus, the second order cross moment is 0, and the secondnootieent |sl—2. A straightforward analysis

holds for other dimensions. This explains why it is necestaadd a scalailL2 to each normalized second

order central moment when the indices are the same dimeaasibit is not necessary to add anything for
normalized second order central moments consisting oscrusments.

In the next section, these moment calculations will be usg¢ti@foundation for many of the object features.

3 Hyper-Ellipsoid Fitting

Several useful features are calculated based on the feaifieehyper-ellipsoid fit to each object. A hyper-
ellipsoid can be fit using the eigenvalues/eigenvectorsctwim turn depend upon the measurement of the
covariance matrix.

A 2D ellipse is shown in Figuré&. An ellipse is defined as a set of points, the sum of whoserdistafrom
the foci is a constant,& where 2 is the full length of the ellipse on the x-axis. With an elkpsentered
on the origin and aligned with the x/y-axes, the foci of tHgsé are located at (f,0) and (-f,0). Then, the
locations where the ellipse intersects the y-axis is attioca (0,b) and (0,-b), and the line connecting the
foci to these locations have length From the triangle thus formed, it is clear tHat= a? — b?.

3.1 Covariance Matrix (I 7

(-,0) (0,0) (f,0) la,0)

—

" (b.0)

Figure 1:Ellipse notation illustration.

These definitions can be expanded to 3D and will be used irtlwsving feature definitions. First, however,
the covariance measurement will be defined in terms of thealired second order central moments, and
these will, in turn, be used to defined the eigenvalues/e&ars.

3.1 Covariance Matrix (ND)

The covariance matrix is constructed directly from the raliped second order central moments in ND
using the loop defined in Algorithm 1. For example, in 2D, thég€omes

Woo Moy
cov(l(x,y)) = [] (21)
(1) Hip Moo

and in 3D it becomes , , ,
M200 M110 Moz

cov(l(x,y)) = |-'l§|_10 %)20 %11 (22)
Mi01 Moir Mooz

3.2 Eigenvalues and Eigenvectors (ND)

The eigenvectors and eigenvalues of the objects are neededlfulating many features. These are calcu-
lated directly by eigen-decomposition of the ND covarianrix. The notation we use here is

e \ = iM eigenvalue of covariance matrix

e V; = eigenvector corresponding A

For example, in 2DA; is the eigenvalue along the main axis, angis the eigenvalue along the axis
perpendicular to the main axis.

Note that, in 2D, the calculation of the eigenvalues can inpkfied as

oot iy, VMR (o)

A 2 2

(23)

4 Calculated Object Features

4.1 Volume and Centroid (ND)

The volume and centroid of the objects can be directly catedl from the image moments. For example,

. . Mo M . : :
in 2D: Volume =Mgg, Centroid = 10 TOL \When calculating the unweighted centroids a binary

00’ Moo
object, and when calculating the weighted centrbid,the intensity image.

4.2 Axes Lengths (ND)

The length of the axes of the ND hyper-ellipsoid can be founectly from the eigenvalues as

4N (24)

wherei is the index of the eigenvalue from=0,...,D — 1. If the eigenvalues are in increasing order, the
axes lengths will correspond to the increasing lengthsehifper-ellipsoid axes. Thus, for a 2D object, the
major axis length is ¢A1, and the minor axis length is\/q.

Referring to Figurel, these definitions mean that= 2/A1 andb = 2y/Ao.
4.3 Eccentricity (2D)

Eccentricity is defined in 2D as the ratio of the distance ketwthe foci to the length of the major axis.
Using Figurel, this is equal to; Sincea = 2\/A1, b= 2y/Ag, and f? = a® — b?

f \/MajorAxisLengtf — MinorAxisLengtt? \/(4\/7_1)2 =42 A=
a MajorAxisLength N 4/ Ay N M

(25)

Note that as the ellipse approaches a cirsle;— A1 and the foci become$? ~)\f —)\f = 0 leading to an
eccentricity of 0. As the ellipse approaches a likg;— 0, andf? ~)\f, so the eccentricity becomes 1.

4.4 Elongation (2D)

The elongation feature is defined as the ratio of the majar laxigth to the minor axis length

MajorAxisLength 4v/A1 M
MinorAxisLength 4,/A; |/ Ao’

(26)

4.5 Object Orientation (2D)

In 2D, the eigenvectorg; corresponding to the largest eigenvaluecorresponds to the major axis of the
object, so the orientation can be extracted from the andlgdss this eigenvector and the origin

8 =tan?! (X:igéi) (27)

4.6 Bounding Box (ND) 9

In 2D, thisB can also be simply calculated without calculating the ergkres/eigenvectors as

1 2,
8= Ctan*! <A> 28
2 Hoo — Moz (¢8)

4.6 Bounding Box (ND)

The bounding box is calculated as the minimum and maximumeésdn each dimension of the object. Itis
represented as a set of min/max pairs for each dimensiorD lit & [min(X), max(X), min(Y), max(Y)],
and in 3D it is [min(X), max(X), min(Y), max(Y), min(Z), maxj].

4.7 Oriented Bounding Box Vertices (ND)

The oriented bounding box is defined as the bounding boxedigiiong the axes of the object. It is more
complex to compute than the standard axes-aligned bourimtirgs and cannot be defined simply using
min/max pairs since the axes are no longer aligned with tlag@axes.

The oriented bounding box is calculated using the eigenvedd define the rotation of the object. First, the
centroid of the region is subtracted so that the rotatiohbeilabout the center of the region. Then, the object
is rotated to the new coordinate system defined by the eigtarge The bounding boxes are calculated in
the rotated space. The bounding box cannot be transformedtlgi back to the original space because
an oriented bounding box cannot be specified simply by theamthmax in each dimension. Instead, the
oriented bounding box is defined by its vertices, and thesd¢ransformed back to the original coordinate
frame. Finally, the centroid is added back to yield the adgrretated bounding box vertices.

In our implementation, the order of the ND vertices correslsowith binary counting, where min is zero
and max is one. For example, in 2D, binary counting will gi9¢d], [0,1], [1,0], [1,1], which corresponds
to [minX,minY], [minX,maxY], [maxX,minY], [maxX,maxY]. h ND, there will be vertices.

Three additional features that are measured in the process a

e The rotation matrix.
e The oriented bounding box volume.

e The oriented bounding box size, which is an ND vector deswikthe length of the bounding box in
each direction.

4.8 Oriented Image Region (ND)

The rotation matrix calculated for the oriented bounding balculation can be used to rotate the image
region of each object. When all objects are rotated arouadaetroid to align with the coordinate system
defined by the eigenvectors, it has the effect of aligningfate objects along common axes. This operation
can be applied to either the label image or the intensity evagl results in cropped images.

10

5 Implementation

5.1 Implementation Structure

This filter is implemented using a LabelGeometry class, tvhintains all of the information for a particular
label value. A mapper from the label value to the LabelGeoyriéass is populated for each label found in
the label image.

To calculate the features, the code first loops through alhefpixels of the image to populate parts of
the LabelGeometry structure, and then the code loops threagh of the labels to calculate the remaining
features. In the loop through all pixels in the label imageaiculates the following ND values for each
label

Label value

Raw zero order moment (volume)

Raw first order moments

Raw second order moments

Bounding boxes

The output of the first loop is a mapping from all labels in tigut label image to a LabelGeometry structure
with the features listed above calculated. The mapper i@ beeause, depending on the labels in the input
label image, it may be that not all labels from 1 to max(lalaée) will be present (the label 0 is assumed
to be background). The code next loops through all of theldatibecalculate the rest of the features, which
can be derived from the ones above as described in Settidn this iteration, the following values are
calculated

e Centroids

e Second order central moments
e Normalized second order cen tral moments
e Covariance matrices

e Eigenvalues & Eigenvectors

e Axes lengths

e Eccentricity

e Elongation

e Orientation

e Bounding box volume

e Bounding box size

e Image regions defined by the bounding boxes

5.2 Inputs and Feature Accessor Methods 11

All of these features are calculated by default. If an intgrimage is also defined, the code will also loop
through the intensity image and calculate the integrateshgity and weighted centroid by default.

In addition, if the corresponding methods are called, tHvdng features are also calculated. These
features require more computation and/or memory than tier it

e Pixel indices

e Oriented bounding box vertices
e Oriented bounding box volume
e Oriented bounding box size

e Rotation matrix

e Oriented label image

e Oriented intensity image (if intensity image is defined)

5.2 Inputs and Feature Accessor Methods

The only required input is a labeled image. This should benzage with unique label values for each
individual object and the value O for the background. Anami intensity image can also be supplied, in
which case the features based on both intensity and shaljeevaghlculated.

To calculate only the default values, the following code dam used, where el abel er is the
i t kRel abel Conponent | mageFi | t er that has been applied to the connected components of a linagge.

typedef itk::Label GeonetrylmageFilter< Label | mageType > Label GeonetryType;
Label GeonetryType: : Poi nter |abel GeonetryFilter = Label GeonetryType:: New();
| abel GeoretryFilter->Setlnput(relabeler->GetQutput());

| abel Ceomet ryFi | ter->Update();

All that was needed was to define the input image and\galht e(). If it is also desired to calculate
the features based on intensity and/or to calculate therkesathat take more time and memory, a desired
selection of the following lines can be placed beforelhéat e() command on the filter.

| abel Ceomet ryFil ter->Setlntensitylnput(intensityReader->GetCQutput());
| abel Geonret ryFi |t er->Cal cul at ePi xel I ndi ces();

| abel Georret ryFi |l ter->Cal cul at eOri ent edBoundi ngBox() ;

| abel GeonetryFil ter->Cal cul at eOri ent edLabel Regi ons();

| abel GeonetryFilter->Cal cul ateQri entedl ntensityRegions();

Herei nt ensi t yReader is the output of a reader of an intensity image.

The object features are accessed using the label of thetoldjethis case, the labels are assigned by the
rel abel er filter. In the following code, a label value is specified, artlesal features are queried for this
label.

12

Label Geonet ryType: : Label Pi xel Type | abel Val ue = 9;

std::cout << "Volune: " << |abel GeometryFilter->GetVol ume(label Val ue) << "\t";

std::cout << "Centroid: " << |abel GeonmetryFilter->GetCentroid(labelValue) << "\t";
std::cout << "Axes Length: " << |abel CeonetryFilter->Cet AxesLength(label Val ue) << "\t";
std::cout << "Eccentricity: " << |abel GeonetryFilter->CGetEccentricity(labelValue) << "\t";
std::cout << "Bounding box: " << |abel GeonetryFilter->CGet Boundi ngBox(| abel Val ue) << "\t";

The features described in Sectibican be accessed using & () methods in Table.

The features that are calculated internally that do not hacessor methods are

e First order raw moments
e First order weighted raw moments (if intensity image defjned
e Second order raw moments

e Second order central moments

6 Conclusions

The itkLabelGeometrylmageFilter is a filter for measuriegttires of objects in a labeled image. Several
core features are implemented, and the code was designbdtdbese features can be easily extended as
measurements of other features are desired.

13

Table 2:Feature Accessor Methods

unsigned long GetVolume (LabelPixelType)

Return the number of pixels for a label. This is t
same as the volume and the zero order moment.

RealType Getlntegratedintensity (LabelPix
Type)

e[Return the integrated intensity for a label.

LabelPointType GetCentroid (LabelPixelType

Return the unweighted centroid for a label.

LabelPointType GetWeightedCentroid (L
belPixelType)

aReturn the weighted centroid for a label.

VectorType GetEigenvalues (LabelPixelType)

Return the eigenvalues as a vector.

MatrixType GetEigenvectors (LabelPixelType

Return the eigenvectors as a matrix.

AxesLengthType GetAxesLength (LabelPixg
Type)

slReturn the axes length for a label.

RealType GetMinorAxisLength (LabelPixe
Type)

-Return the minor axis length for a label. This ig
convenience class that returns the shortest length {
GetAxesLength.

rom

RealType GetMajorAxisLength (LabelPixe
Type)

[-Return the major axis length for a label. This is
convenience class that returns the longest length f
GetAxesLength.

rom

RealType GetEccentricity (LabelPixelType)

Return the eccentricity for a label.

RealType GetElongation (LabelPixelType)

Return the elongation for a label.

RealType GetOrientation (LabelPixelType)

Return the orientation for a label defined in radians

D.

BoundingBoxType GetBoundingBox (LabelPi
elType)

x-Return the computed bounding box for a label. T
is organized in min/max pairs as [min(X), max(X
min(Y), max(Y),...]

RealType GetBoundingBoxVolume (LabelPi
elType)

x-Return the volume of the bounding box.

LabelSizeType
belPixelType)

GetBoundingBoxSize (L

aReturn the size of the bounding box.

LabellndicesType GetPixellndices (LabelPixg
Type)

blReturn all pixel indices for a label.

BoundingBoxVerticesType GetOrientedBoun
ingBoxVertices (LabelPixelType)

dReturn the oriented bounding box vertices. The
der of the vertices corresponds with binary counti
where min is zero and max is one. For example
2D, binary counting will give [0,0], [0,1], [1,0], [1,1]
which corresponds to [minX,minY], [minX,maxY]
[maxX,minY], [maxX,maxY].

RealType GetOrientedBoundingBoxVolun
(LabelPixelType)

1eReturn the volume of the oriented bounding box.

LabelPointType GetOrientedBoundingBoxSi
(LabelPixelType)

g&eturn the size of the oriented bounding box.

MatrixType GetRotationMatrix (LabelPixel
Type)

- Return the rotation matrix defined by the eigenyv
ues/eigenvectors.

RegionType GetRegion (LabelPixelType)

Return the region defined by the bounding box.

TLabellmage *GetOrientedLabellmage (L
belPixelType)

aReturn the label region defined by the oriented bou
ing box.

TIntensitylmage
(LabelPixelType)

*GetOrientedIntensitylmag

jeReturn the intensity region defined by the orien

his
)

or-
ng,
in

ed

bounding box.

	Introduction
	Image Moments
	Hyper-Ellipsoid Fitting
	Covariance Matrix (ND)
	Eigenvalues and Eigenvectors (ND)

	Calculated Object Features
	Volume and Centroid (ND)
	Axes Lengths (ND)
	Eccentricity (2D)
	Elongation (2D)
	Object Orientation (2D)
	Bounding Box (ND)
	Oriented Bounding Box Vertices (ND)
	Oriented Image Region (ND)

	Implementation
	Implementation Structure
	Inputs and Feature Accessor Methods

	Conclusions

