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Abstract

Graph-based algorithms have enjoyed renewed interest for solving computer vision problems. These
algorithms have been the subject of intense interest and research. In order to maintain the ITK library
au courant, we developed a framework for graph-based methods of energy minimization in ITK which
employ energy functions derived within a Markov Random Field (MRF) context. This required not only
the implementation of the energy minimization methodology but also the more general requirement of
introducing graph-related data structures into ITK which can be used for other graph-based algorithms
pertinent to future extensions of the ITK library.

Please note that some of the algorithms described in this paper may be covered by patents and, as
such, it is incumbent upon the user to seek licenses before building the binaries which utilize this code.
Also note that “research use” is not exempt from acquiring such licenses. The only exemption from
patent restrictions is “. . . amusement, to satisfy idle curiosity, or for strictly philosophical inquiry.”1
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1 Introduction

Figure 1: The Famous Königsberg Bridges

Since Euler solved the now famous “Bridges of Königsberg” problem in 17362 graph algorithms have been
used in various areas of research including computer vision. There has been a recent renewal in graph-based
approaches to computer vision problems as attested by special issues on such algorithms (e.g. IEEE-PAMI
[3]). Unfortunately there is a conspicuous absence of such algorithms or even a framework to develop such
algorithms in the current ITK library. The work described in this paper is meant as a step towards rectifying
this glaring deficiency.

Two algorithms of note have been the subject of special attention and research [2, 1]. In this paper we
describe the framework we developed for general graph-based methods as well as our implementation of
the work found in [2, 1]. These recent algorithms have resurrected interest in such problems first discussed
more than a decade ago by Greig et al. [5]. The key observation made by these researchers is that solving
the well-known min-cut/max-flow problem [4] is equivalent to minimizing certain energy functions. Such
algorithms have found useful application in such vision problems as stereo, motion, image restoration, scene
reconstruction, and image segmentation [2].

2 The origins of graph theory finds its historical roots at the confluence of Euler’s mathematical prowess and a local fascination
with the conundrum presented by the early 18th century topographical characteristics of Königsberg, Prussia (now Kaliningrad,
Russia). The puzzle concerned the existence of a path that traversed all seven bridges without repeated traversal (or, in modern
parlance, does an Eulerian path exist for the corresponding graph structure?).
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The requisite form for the aforementioned energy functions is that of a Markov Random Field (MRF) with
binary labeling given by

E( f ) = ∑
p∈P

Dp( fp)+ ∑
{p,q}∈N

Vp,q( fp, fq), fp ∈ L = {α,β} (1)

where f is the pixel labeling of the set of image pixels, P . For the energy functions described in [1, 5]
the label, fp, of each pixel p can have one of two labels. We will denote this set of labels arbitrarily as
L = {α,β}.3 Dp( fp) is the likelihood measurement of the observed data. Vp,q( fp, fq) is the interaction
measurement (prior probability) between neighboring pixels p and q with respective labelings fp and fq

(where the pixel neighborhood is denoted by N ).

The equivalency between the solution to the well-studied min-cut/max-flow problem and the energy mini-
mization of equation (1) requires the transformation of equation (1) to the graph domain.4 For our purposes,
the set of image pixels, P , is represented as a set of nodes in a constructed graph with two additional ter-
minal nodes required to represent the source and the sink nodes common in network flow problems. Each
node that represents an image pixel has a directed edge going from the source node to itself and from itself
to the sink node. Associated with each of these directed edges is a weight calculated from the quantity
Dp. Additionally, neighboring pixels are linked by edges in the graph. Associated with each edge between
neighboring pixels is the edge weight derived from the quantity Vp,q. An example of such graph construction
is illustrated in Figure 2 for a 1-D image consisting of the pixel set P = {p,q,r}.

After using any min-cut/max-flow algorithm on the specially constructed graph, one gets a partitioning of
the nodes of the graph into two sets — one set pertaining to the sink node and one pertaining to the source
node, e.g. Figure 2(b). Boykov et al. compare different min-cut/max-flow algorithms in [1] including
their own algorithm specifically tailored for graphs constructed from images. Experimentally, they found
that even though the worst-case complexity of their algorithm was higher than other algorithms, within the
domain of computer vision applications, their algorithm performed significantly better than other standard
algorithms.

The solution for the binary labeling MRF problem is made simple using min-cut/max-flow algorithms.
However, for n-ary labelings, L = {α1,α2, . . . ,αn}, finding the minimum of equation (1) is NP-hard [2].
Fortunately, a reasonable approach to this multi-label minimization problem recasts the n-ary problem as a a
series of binary sub-problems. Although the solution is not necessarily the global minimum, it is guaranteed
to be within a certain factor of the global minimum [2]. This algorithm, known as α-expansion, is given in
Table 1. Note that execution of step 3(a) utilizes the min-cut/max-flow algorithm described in [1].

2 Software Implementation

In the previous section we gave a theoretical overview of the energy minimization scheme of Boykov et al.
and its usage for such applications as image segmentation. In this section we describe the actual software
implementation. Below is a list of the classes that were written for the software implementation and potential
locations within the ITK directory structure.

• BasicFilters
3 The case for n labels, i.e. L = {α1,α2, . . . ,αn} will be addressed by the α- expansion algorithm [2] discussed later in this

paper.
4 A graph, G, consists of a pair of sets, G = (V,E), where the elements of E are 2-element subsets of V . Usually the elements

of V are denoted as nodes and the elements of E are the edges.
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Figure 2: (a) Graph construction for a 1-D image with pixel set P = {p,q,r}. The source and sink node
are labeled S and T , respectively. In this example, a pixel’s immediate neighbors comprise the pixel neigh-
borhood. For the examples shown in this paper, the edge weights between pixels are symmetric such that
Vp,q = Vq,p. (b) Hypothetical minimum cut for this 3-pixel example. Pixel p belongs to the sink terminal, T ,
while the set {q,r} belongs to the source terminal, S.

Table 1: Algorithmic synopsis of the α-expansion algorithm given in [2].

1. Start with an arbitrary labeling f .

2. Set success := 0.

3. For each label α ∈ L

(a) Find f̂ = arg min E( f ′) among f ′ within one α-expansion
of f .

(b) If E( f̂ ) < E( f ), set f := f ′ and success := 1.

4. If success = 1 go to step 2.

5. Return f .

– itkBoykovAlphaExpansionMRFImageFilter.h

– itkBoykovAlphaExpansionMRFImageFilter.txx

– itkBoykovMinCutGraphFilter.h

– itkBoykovMinCutGraphFilter.txx

– itkGraphToGraphFilter.h

– itkGraphToGraphFilter.txx
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– itkGraphToImageFilter.h

– itkGraphToImageFilter.txx

– itkImageToGraphFilter.h

– itkImageToGraphFilter.txx

• Common

– itkBoykovGraphTraits.h

– itkDefaultGraphTraits.h

– itkImageGraphTraits.h

– itkBoykovImageToGraphFunctor.h

– itkBoykovImageToGraphFunctor.txx

– itkDefaultImageToGraphFunctor.h

– itkDefaultImageToGraphFunctor.txx

– itkGraph.h

– itkGraph.txx

– itkGraphDuplicator.h

– itkGraphDuplicator.txx

– itkGraphSource.h

– itkGraphSource.txx

– itkInPlaceGraphFilter.h

– itkInPlaceGraphFilter.txx

• Testing

– itkGraphTest.cxx

– itkBoykovAlphaExpansionFilterTest.cxx

• Examples

– BoykovGraphCutFilter.cxx

The inheritance relationship between these newly implemented classes and existing classes is given in Fig-
ures 3, 5, and 4. Note that the graph class and associated filter class hierarchies have analogical equivalencies
to the mesh and image-related classes. For example, just as the ImageSource and MeshSource classes are
base classes for any filter producing their corresponding data types as outputs, GraphSource is the base class
for any filter which produces a graph.

In order to further elucidate the functionality and the relationships between classes, we first describe the
graph framework and then revisit the α-expansion algorithm discussed in Table 1 to give the reader a sense
of the usage of the associated classes.
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Figure 3: Illustration of the hierarchy for the filter classes for graphs and graph-related data structures. The
graph class is templated over a class which defines the graph traits. The graph traits classes define the node
and the edges.

Figure 4: Illustration of the hierarchy for the α-expansion filter algorithm. Note that it is derived from the
image filter class associated with MRFs.

2.1 Graph Framework

As mentioned previously, a graph, G, consists of a pair of sets, G = (V,E), where the elements of E (edges)
are 2-element subsets of V (nodes). We envision graphs to be on par with the image and mesh types as
principle data types in ITK. The class hierarchy for the graph class is given in Figure 3.

This basic class consists of two containers, viz. an edge container and a node container. The definition of
the node types and the edges types are given in the graph traits class over which the graph class is templated
(similar to the relationship between the mesh class and the mesh traits classes). Also defined within the class
are simple iterators for the nodes and edges.

Due to the simplicity of the graph class and the ability to template over specifically tailored nodes and edges,
i.e. graph traits, we foresee a simple integration with any future graph-based methods implemented in ITK.
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Figure 5: Illustration of the hierarchy for the graph-related filter classes.

2.2 α-Expansion Redux

We first described the α-expansion algorithm in Table 1. We revisit that algorithm to elucidate
the associated class structure. Shown in Figure 6 is a flow diagram illustrating the usage of the
BoykovAlphaExpansionFilter class. The user-provided input includes the image to be segmented and
the selection of the number of labels, n. For each label i = 1,2, . . . ,n, the user provides the likelihood
image Pr(Ip|label i) and sets the pixel index container for label i (optional). Also necessary is the functor
(i.e. ImageToGraphFunctor) which essentially describes how to build a graph from the given image. After
execution of the BoykovAlphaExpansionFilter, the output consists of an integer image where each pixel
corresponds to one of the labels ip ∈ {1,2, . . . ,n}.

Shown in Figure 8(b) are sample results derived from the 2-D brain slice shown in Figure 8(a). The proba-
bility images that were supplied as input were derived by using the mean of each pixel type in the original
image and using the Gaussian models given in equations (2), (3), and (4). The three labels cs f , gm, and wm
correspond to CSF, gray matter, and white matter, respectively. The mean pixel value of each of these three
labels is denoted by µ.

Pr(Ip|cs f ) =
1√

2πσcs f
exp

(
−

(Ip−µcs f )2

2σ2
cs f

)
(2)

Pr(Ip|gm) =
1√

2πσgm
exp

(
−

(Ip−µgm)2

2σ2
gm

)
(3)
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Figure 6: Flowchart of the functioning of the α-expansion algorithm.

Pr(Ip|wm) =
1√

2πσwm
exp
(
−

(Ip−µwm)2

2σ2
wm

)
(4)

While such a simplistic approach leads to plausible results, more sophisticated methodologies can certainly
be employed. For example, the user has the option of specifying sets of pixels which correspond to a given
label. In this way, the user can hard-constrain a pixel to be of a certain label (see Figure 10). From such a
sampling of pixel types, it is possible to use non-parametric techniques, e.g. Parzen windowing, to construct
the likelihood images.

2.3 Boykov Min-Cut/Max-Flow Filter

As mentioned previously, we can find an approximate solution to the multi-label problem by dividing this
problem into a set of binary sub-problems. This is step 3(a) of Table 1. This requires the min-cut/max-
flow algorithm discussed previously. For each iteration of step 3 of Table 1, a label is chosen. Using the
ImageToGraphFilter class, a graph exhibiting the specific form described in [2] is created from the input
images using the image-to-graph functor. This graph is then labeled using the min-cut/max-flow algorithm
from which the a new image labeling is derived. The flowchart for this subprocess is given in Figure 7.

3 Sample Usage

We include the file itkBoykovGraphCutFilterTest.cxx which produces the 2-D and 3-D results illus-
trated in the following section. Consistent with Figure 6 the input consists of an input image to be segmented,
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Figure 7: Flowchart describing the min-cut/max-flow algorithm used in step 3(a) of Table 1.

and n likelihood images—one for each class. We then specify the BoykovImageToGraphFunctor as follows:

198 typedef itk::BoykovGraphTraits <short, ImageDimension > GraphTraitsType;
199 typedef itk::Graph <GraphTraitsType > GraphType;
200
201 typedef itk::BoykovImageToGraphFunctor
202 <LikelihoodImageType , GraphType > FunctorType;
203 typename FunctorType::Pointer BoykovFunctor = FunctorType::New();
204 BoykovFunctor ->SetLambda( 10.0 );
205 BoykovFunctor ->SetSigma( 10.0 );
206 BoykovFunctor ->SetExcludeBackground( exclude );
207 BoykovFunctor ->SetBackgroundValue( 0 );
208 BoykovFunctor ->SetRadius( 1 );
209 BoykovFunctor ->ActivateAllNeighbors();
210
211 // BoykovFunctor->ActivateIndex( 1 );
212 // BoykovFunctor->ActivateIndex( 3 );
213 // BoykovFunctor->ActivateIndex( 4 );
214 // BoykovFunctor->ActivateIndex( 5 );
215 // BoykovFunctor->ActivateIndex( 7 );

The call on line 208 specifies that all the neighbors within the specified radius be connected to
the center voxel. However for a sparser neighborhood structure, one can specify the neighbor-
hood connections individually as shown in the commented lines 209-213. We then specify the
BoykovAlphaExpansionMRFImageFilter and input the likelihood images.

217 typedef itk::BoykovAlphaExpansionMRFImageFilter
218 <LikelihoodImageType , GraphTraitsType > FilterType;
219 typename FilterType::Pointer filter = FilterType::New();
220 filter ->SetRandomizeInitialLabeling( false );
221 filter ->SetNumberOfClasses( Nlabels );
222 filter ->SetInput( input );
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223 filter ->SetImageToGraphFunctor( BoykovFunctor );
224
225 /**
226 * The zeroth label is reserved for the background.
227 */
228 filter ->SetLikelihoodImage( 1, label1_image );
229 filter ->SetLikelihoodImage( 2, label2_image );
230 if( Nlabels > 2 )
231 {
232 filter ->SetLikelihoodImage( 3, label3_image );
233 if( Nlabels > 3 )
234 {
235 filter ->SetLikelihoodImage( 4, label4_image );
236 }
237 }

One can also assign specific indices to be of a certain label. This is done

243 IndexType index;
244 typename FilterType::IndexContainerType label1_indices;
245 typename FilterType::IndexContainerType label2_indices;
246
247 for( unsigned int i = 32; i <= 72; i++ )
248 {
249 for( unsigned int j = 86; j <= 124; j++ )
250 {
251 index[0] = i;
252 index[1] = j;
253 label2_indices.push_back( index );
254 }
255 }
256
257 for( unsigned int i = 5; i <= 30; i++ )
258 {
259 for( unsigned int j = 5; j <= 30; j++ )
260 {
261 index[0] = i;
262 index[1] = j;
263 label1_indices.push_back( index );
264 }
265 }
266
267 filter ->SetIndexContainer( 1, label1_indices );
268 filter ->SetIndexContainer( 2, label2_indices );

4 Sample Results

We give a selection of a few of the results that we have derived from the methodology described in this
report. The images were produced using ITK-SNAP. Note that all the likelihood images have been specified
by the naive approach of sampling a set of images pixels from a particular region and modeling the likelihood
as a normal distribution. Also note that we did not attempt to optimize the parameter choices.
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(a) (b)

Figure 8: Results of the α-expansion algorithm (Table 1) from a 2-D brain slice for L = {1,2,3}. Note that
the background pixels have a value of 0. Here the labels correspond to CSF, gray matter, and white matter,
respectively.

(a) (b)

Figure 9: Results from a CT scan where n = 4. The different labelings correspond to background, liver,
spleen, and bone. (a) The original image. (b) Segmented image.
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