
An alternative threading model for the Insight
Toolkit
Release 1.00

Daniel Blezek1

December 21, 2008
1blezek.daniel@mayo.edu

Mayo Clinic, Rochester, MN, USA

Abstract

This technical note presents an alternative threading model for the Insight Toolkit. The existing ITK
threading model is based on a “scatter / gather” model and divides work evenly amongst all threads.
Though suitable for many filters, considerations such as memory allocation per thread are important in
some classes of filters. We propose to use the ZThread library to explore a threading model based on an
execution pool. The ZThread library is a cross platform, open source thread abstraction library loosely
based on Java’s threading model.

Contents

1 Introduction and Background 2

2 Fine Grain Thread Control 3

3 ZThread Library 4

4 Software Requirements 4

5 ZThread License 5

2

1 Introduction and Background

The basic model underlying the MultiThreader is “scatter / gather” of threads. A multi-threaded
filter implements ThreadedGenerateData() and processes the region passed a region to operate on
(OutputImageRegionType). Inside ImageSource::GenerateData, the entire output region is divided into
N subregions, where N is the number of allowed threads (MultiThreader::GetNumberOfThreads()).
Then all N threads are created, and handed their region to process. ImageSource::GenerateData then
waits until all N threads have completed and returns. The algorithm for ImageSource::GenerateData is
shown in Algorithm 1.

Algorithm 1 Threading model for ImageSource::GenerateData.
AllocateOutputs() { Allocate the output of this filter }
BeforeThreadedGenerateData() { Allow the sub class to perform any necessary setup}
for all Each thread is given an ID from 0..N-1 do {Execute N threads in parallel}
{ Get the threadID’th region of N output sub-regions}
SplitRegion = SplitRequestedRegion (threadID, N)
{ Have the subclass execute this portion of the output}
ThreadedGenerateData (SplitRegion, threadID)

end for
AfterThreadedGenerateData() { Allow the subclass to perform any cleanup }

MultiThreader instance in ImageSource is responsible for starting up N threads, calling
ImageSource::ThreadedGenerateData in each one, then waiting for all N threads to exit.

This model, though extremely useful for exploiting modern multi-core processors, has several important
drawbacks for certain classes of filters. Filters requiring large amounts of intermediate memory suffer in the
current implementation. Regardless of what N is, all intermediate results are required to be allocated all at
once. Consider a Hessian based filter such as the HessianToObjectnessMeasureImageFilter recently
submitted to the Insight Journal [1]. If one thread is used, the entire output will be requested, necessitating
the generation of the entire Hessian. A Hessian calculation requires, at minimum, 6 times the memory of
the input volume. This memory requirement is prohibitively large for otherwise practical images. If many
threads are used, the memory overhead is not changed, in addition, the filter fails to achieve full speedup
from multiple cores because it is forced to recalculate pixels on the border between regions. Thus, this class
of filters is often limited to a single thread. For the purposes of this discussion, I call these filters Large
Memory Filters (LMF).

A second important limitation of MultiThreader is the lack of flexibility in scheduling threads.
The implementation of ImageSource::SplitRequestedRegion simply divides the image along the
last dimension, i.e., by slices in 3D. Though the user can override the default behavior of
ImageSource::SplitRequestedRegion to divide the image up different, he cannot, for instance, divide
the image into M small regions to be processed by N threads (where M >> N). This concept is know as a
work pool (see http://en.wikipedia.org/wiki/Thread_pool_pattern for instance). The two limita-
tions are related.

3

2 Fine Grain Thread Control

The limitations of ITK’s threading scheme can be rectified through the use of several different parallel
constructs. Consider Algorithm 2. In this algorithm, the processing of a LMF is divided into small parcels
based on memory requirements, rather than simply splitting the image into N parts. Allowing filter designers
the flexibility to divide jobs by memory leads to fine grain control of parallel processing. The number of
threads executing may still be the number of processors, as before, but each processor will have more jobs
of smaller size.

Algorithm 2 Threading model for ImageSource::GenerateData
BeforeThreadedGenerateData()
queue = new PoolExecutor (N) {create a queue with N threads }
J = GetMemoryRequired() / 10 {Split the requested region into 10 MB jobs, J >> N}
for i = 1..J do

SplitRegion = SplitRequestedRegion (i, J);
queue.push (new Job (SplitRegion))

end for
queue.wait() {Wait until all the jobs have been completed}
AfterThreadedGenerateData() { Allow the subclass to perform any cleanup }

Algorithm 2 uses a JobPool (PoolExecutor from the ZThread library). JobPools maintain a queue of
jobs to process and one or more worker threads. Each worker pops a job off the queue and processes
it, repeating until the queue is empty. The JobPool class grants greater flexibility to the filter writer. This
algorithm is shown in itk::BilateralZThreadImageFilter included with this document. Rather than al-
lowing the default implementation of GenerateData located in itk::ImageSource to use the standard ITK
itk::MultiThreader, itk::BilateralZThreadImageFilter uses the PoolExecutor from the ZThread
library. The code is shown here:

//--
template< class TInputImage, class TOutputImage >
void
BilateralZThreadImageFilter<TInputImage, TOutputImage>
::GenerateData()
{
// Call a method that can be overriden by a subclass to allocate
// memory for the filter’s outputs
this->AllocateOutputs();

// Call a method that can be overridden by a subclass to perform
// some calculations prior to splitting the main computations into
// separate threads
this->BeforeThreadedGenerateData();

// Do this with ZThread’s PoolExecutor
ZThread::PoolExecutor executor(this->GetMultiThreader()->GetNumberOfThreads());
typename TOutputImage::RegionType splitRegion;
try

4

{
int NumberOfRegions = 20;
for (int i = 0; i < NumberOfRegions; i++)
{
ZThreadStruct* s = new ZThreadStruct();
s->threadId = i;
s->Filter = this;
this->SplitRequestedRegion(s->threadId, NumberOfRegions, splitRegion);
s->region = splitRegion;
executor.execute (s);
}

// Wait for all jobs to finish
executor.wait();
}

catch (ZThread::Synchronization_Exception &e)
{
itkGenericExceptionMacro (<< "Error adding runnable to executor: " << e.what());
}

// Call a method that can be overridden by a subclass to perform
// some calculations after all the threads have completed
this->AfterThreadedGenerateData();

}

In this example, we create NumberOfRegions jobs in the ZThread::PoolExecutor represented by
ZThreadStruct, a simple class that calls the filter’s ThreadedGenerateData. The PoolExecutor ensures
each ZThreadStruct is deleted after being processes.

Ideally, this code would migrate out of an individual filter and into a subclass of MultiThreader, however,
the design of MultiThreader discourages sub-classing. None of the methods are virtual, and many useful
variables are private. Use of alternative threading schemes in ITK would require redesign of this class.

3 ZThread Library

The ZThread library abstracts many important thread concepts including barriers, mutex locks, semaphores,
and thread pools. ZThreads is hosted on SourceForge (http://sourceforge.net/projects/zthread/)
and documented using Doxygen (ZThreads is implemented using platform specific primitives. The
abstractions present a uniform API and many higher level constructs such as PoolExecutors
(http://zthread.sourceforge.net/html/classZThread_1_1PoolExecutor.html).

4 Software Requirements

You need to have the following software installed to compile this code:

• Insight Toolkit 3.0 or greater

5

• CMake 2.4

The code described in this paper is in the Subversion repository at

http://svn.na-mic.org/NAMICSandBox/trunk/ThreadIT

and may be anonymously checked out using the command:

svn co http://svn.na-mic.org/NAMICSandBox/trunk/ThreadIT ThreadIT

The code should build on all reasonable platforms (ZThreads may not support SGI’s sproc).

Note that other versions of the Insight Toolkit are also available in the testing framework of the Insight
Journal. Please refere to the following page for details

http://www.insightsoftwareconsortium.org/wiki/index.php/IJ-Testing-Environment

5 ZThread License

Copyright (c) 2005, Eric Crahen

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished
to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

References

References

[1] Luca Antiga. Generalizing vesselness with respect to dimensionality and shape. Insight Journal, 2007.
1

