
Read and Write Support
for MevisLab Dicom/Tiff Format

Release 1.00

Rashindra Manniesing1

January 18, 2009

1Biomedical Imaging Group Rotterdam (BIGR)
Erasmus MC - University Medical Center Rotterdam,

the Netherlands
r.manniesing@erasmusmc.nl

Abstract

MevisLab [2] is a development environment for medical image processingand visualization, which
supports the reading and writing of combined dicom/tiff images. In this document we provide the source
code (ImageIO factory) and testing data for the Insight Toolkit (ITK) framework [4].

Latest version available at theInsight Journal[http://hdl.handle.net/1926/9999]
Distributed underCreative Commons Attribution License

Contents

1 Introduction 1

2 Available Classes 2

3 Required Libraries 2

4 Adding MevisIO to your Application 2

5 Extensions 3

1 Introduction

MevisLab [2] makes use of a combined header-image file format to support the reading and writing of
images. The header file consists of one dicom file, usually copied from e.g. a raw dicom file and in case of

http://www.insight-journal.org
http://hdl.handle.net/1926/9999
http://creativecommons.org/licenses/by/3.0/us/

2

three dimensional data also storing the interslice spacing, and of one TIFF file possibly compressed, for the
image data. In this document we describe the available classes, required libraries and suggestions on how to
include the new fileformat for your applications.

2 Available Classes

The following classes are provided:

• itkMevisDicomTiffImageIOFactory.h/cxx

Basic image IO factory class to create an instance of the object.

• itkMevisDicomTiffImageIO.h/cxx

The actual implementation of the dicom/TIFF file format. These classes have been developed using
ITK 3.10.0, gdcm 2.0.10 and TIFF 3.8.2. It currently supports 2D and 3D scalar images, and uchar,
char, ushort, short, uint, int and float pixel types. Furthermore, it always assumes tiled TIFF images
when reading or writing, and always uses LZW compression when writing.

3 Required Libraries

The following libraries must be installed: GDCM, version 2.0 [1] and the TIFF library [3] (version 3.8.2 is
recommended). GDCM can be build with cmake, TIFF uses autoconfigure. When (re-)compiling the ITK
tree, set the corresponding flags to make use of the system installed versions.

4 Adding MevisIO to your Application

One possibility is to add the new file format to the ITK tree, bycopying these files to the directory In-
sight/Code/IO/ and modifying the files CMakeLists.txt anditk::ImageIOFactory.cxx. It is recom-
mended to register the new factory before the GDCM and TIFF factories. Clearly, this requires a recompi-
lation of libITKIO.

Another possibility is to add the new file format to a specific application (see for exam-
ple itkMevisTest) by including the following header files itk::ObjectFactoryBase.h,
itk::MevisDicomTiffImageIOFactory.h and itk::MevisDicomTiffImageIO into your applica-
tion, and explicitly register the new factory to base beforereading and/or writing the images:

typedef itk::MevisDicomTiffImageIOFactory IOF;
IOF::Pointer iof = IOF::New();
itk::ObjectFactoryBase::RegisterFactory(iof);

It may be convenient to have the new factory compiled separately in a shared library for usage in several
applications:

ADD_LIBRARY(MevisIO
itkMevisDicomTiffImageIO.cxx

Latest version available at theInsight Journal[http://hdl.handle.net/1926/9999]
Distributed underCreative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1ImageIOFactory.cxx.html
http://www.itk.org/Doxygen/html/classitk_1_1ObjectFactoryBase.h.html
http://www.itk.org/Doxygen/html/classitk_1_1MevisDicomTiffImageIOFactory.h.html
http://www.itk.org/Doxygen/html/classitk_1_1MevisDicomTiffImageIO.html
http://www.insight-journal.org
http://hdl.handle.net/1926/9999
http://creativecommons.org/licenses/by/3.0/us/

3

itkMevisDicomTiffImageIOFactory.cxx)
TARGET_LINK_LIBRARIES(app MevisIO)

A final note concerns the use of RESCALEINTERCEPT and RESCALESLOPE, stored in the DICOM
header file for linear rescaling of the pixel intensities. These values arenot taken into account when read-
ing/writing images. How to test for non-default values is shown in the following example of source code:

typedef itk::ImageIOBase IOB;
IOB * iob = reader->GetImageIO();

typedef itk::MevisDicomTiffImageIO IO;
if (dynamic_cast<IO*>(iob))
{

IO * io = dynamic_cast<IO*>(iob);
const double intercept = io->GetRescaleIntercept();
const double slope = io->GetRescaleSlope();

if (intercept != itk::NumericTraits<double>::Zero ||
slope != itk::NumericTraits<double>::One)

{
std::cout << "applying inter/slope\t" << intercept << " " << slope << std::endl;

}
}

5 Extensions

The following can be considered to extend the functionalityof these classes: the support of streaming,
RGB pixel types, 4D imaging data, non-tiled TIFF images and the possibility to let the user decide which
compression scheme to use.

References

[1] GDCM, release 2.0.http://apps.sourceforge.net/mediawiki/gdcm/index.php?title=GDCM_Release_2.0
3

[2] MevisLab, software for medical image processing and visualization. http://www.mevislab.de.
(document), 1

[3] libTIFF - TIFF Libary and Utilities.http://www.libtiff.org. 3

[4] L. Ibáñez, W. Schroeder, L. Ng, and J. Cates.The ITK Software Guide. Kitware, Inc., second edition,
2005. (document)

Latest version available at theInsight Journal[http://hdl.handle.net/1926/9999]
Distributed underCreative Commons Attribution License

http://apps.sourceforge.net/mediawiki/gdcm/index.php?title=GDCM_Release_2.0
http://www.mevislab.de
http://www.libtiff.org
http://www.insight-journal.org
http://hdl.handle.net/1926/9999
http://creativecommons.org/licenses/by/3.0/us/

	Introduction
	Available Classes
	Required Libraries
	Adding MevisIO to your Application
	Extensions

