Level Set Segmentation using Coupled Active
Surfaces

Release 0.00

Kishore Mosaliganti!, Benjamin Smith?, Arnaud Gelas!, Alexandre Gouaillard!
and Sean Megason'

March 13, 2009

I'Systems Biology, Harvard Medical School, Boston, MA-02139, USA
2GrUVi Lab, MIAL, School Of Computing Science, Simon Fraser University, Burnaby, V5A 156

Abstract

An Insight Toolkit (ITK) processing framework for simultaneous segmentation of multiple objects using
active contours without edges is presented in this paper. These techniques are also popularly referred to
as multiphase methods. Earlier, we had an implemented the Chan and Vese [1] algorithm that uses level-
sets to accomplish region segmentation in images with poor or no gradient information. The current
work extends that submission to use multiple level sets that evolve concurrently. The basic idea is to
partion the image into several sets of piecewise constant intensity regions. This work is in contrast to
the level-set methods currently available in ITK which necessarily require gradient information and also
necessarily segment a single object-of-interest. Similar to those methods, the methods presented in this
paper are also made efficient using a sparse implementation strategy that solves the contour evolution
PDE at the level-set boundary. This work does not introduce any new filter but extends the earlier
submitted to filters to process multiple objects. We include 2D/3D example code, parameter settings and
show the results generated on a 2D cardiac image.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1]
Distributed under Creative Commons Attribution License

Contents

1 Introduction 2
2 Description: Multiphase Level Sets 2
3 Implementation 3

4 Memory optimizations using kd-trees 4

http://www.insight-journal.org
http://hdl.handle.net/1926/1
http://creativecommons.org/licenses/by/3.0/us/

5 Usage 5
5.1 Dense Option o e e e e e e e 5
5.2 Sparse Option e e e e e e e e e e e 5

6 Results 7

1 Introduction

In image analysis, we are often interested in segmenting more than a single object (of the same or different
kind) from a given image. This especially happens when the objects to be segmented are adjacent to each
other and the delineation of one object automatically affects the neighboring object. In such situations, it
makes sense to concurrently process their segmentation in order to optimally segment the objects. As a
simple example, in microscopy image analsis, there is a significant interest in segmenting nuclei or cells
as shown in Figure 1. Each image is acquired at high resolution and could countain thousands of cells.
These cells often cluster in regions and appear to overlap. The challenge is to split these cells into individual
components. An iterative (or linear) cell extraction procedure using level-sets can cause inconsistent splits
since each level-set functions does not compete with the neighboring cells. There could be an overlap of the
level-set functions. Hence, in such cases, it is imperative to use multiphase methods for segmentation.

Figure 1: Multiple cells in close contact and in the same field of view.

There are several research papers in literature devoted to multiphase methods that optimize the number of
level-set functions used for a generic case of N phases or objects. While computationally, this is optimal, it
is not the most robust choice. We are largely motivated by microscopy applications where we would like to
segment and track cells and place constraints on the area, volume and shapes of each individual cell. Each
cell has a unique fluoroscence intensity level. Hence, in these circumstances, we deemed it best to have
a unique level set function per cell. In this implementation, we extend the implementation of the earlier
submission on Chan and Vese method to multiphase methods.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/1926/1
http://creativecommons.org/licenses/by/3.0/us/

2 Description: Multiphase Level Sets

The basic idea of active contour models relies on detecting salient objects by evolving a curve or a surface
subject to image-based constraints. Let Q C R? be the image domain and 7 : @ — R be a given image
function. Further, let ¢ : Q@ — R be a signed distance function which represents the level set function that is
negative in the object of interest and positive outside.

Chan and Vese [1] proposed an active contour model for segmenting images containing objects that have
poor boundaries. They proposed an energy that is an piece-wise constant approximation to the Mumford
and Shah functional:

F(C,c1,62) :ll/ |I(x)—cl\2dx+lg/ [[(x) — c2)?dx + u.Area(C) + v.Volume(C) (1)
in out

where Q;, and €,,, represent the region inside and outside the contour C, respectively, and ¢; and ¢; are

two scalar constants that approximate the image intensities. The first two terms are often referred as global

binary fitting energy terms that seek to separate an image into two regions of constant image intensities. By

using a level-set formulation, the minimization problem can be converted to a level-set evolution equation.

In the multiphase case, we have N level set functions {¢,- - -, ¢, } and scalar intensity constants {c;, -+, ¢, }
respectively and ¢(represents the background intensity. The N parameters {1, 1,---, Aj ,} are scalar weights
of the individual object intensity fitting terms and A, is the weight for the background intensity fitting term.

The formulation is easily arrived at in the following way. Consider extending the simple Chan-Vese Equa-
tion 1 to the N objects. This accounts for the summation term with the subscript i. The first term represents
the i-th foreground intensity fitting with scalar constant ¢; and weighted by A; ;. The second term is the
background intensity fitting with scalar constant ¢y and weighted by A,. Note that the background is char-
acterized by a product of the inverse Heaviside functions of the N foregrounds. The third and fourth terms
represent the length and area regularization terms for the N level sets. Finally, the last term represents the
overlap penalty function. This term penalizes the level set functions in regions where they overlap and y
represents the scalar penalty constant.

Fii(gy, oo Quyco,cr, o ycn) = /Q i[xl,i(1<x>—c,-)zﬂ<¢,~>+fjn(l—H<¢j>)(1<x>—co)2
i=1 i
n mw,-w(@-)+vH<¢i>y2H<¢i>H<¢,->]dx @

i<j

Using standard mathematics, we arrive at the Euler-Langrange equation for deriving the update equation for
the level sets. For the i-th level set function:

90 _ 8o(@0) | — A1 i(1(x) —ci)> + M [TH(9,) (I = co)* + udiv(V¢l:)_V_YZH(%)] ®
ot i Vil J#i

3 Implementation

The dense and sparse filter options affect the computational performance of the method. However, they both
solve the same underlying equation. Hence, the parameter settings remain the same. We now describe each

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/1926/1
http://creativecommons.org/licenses/by/3.0/us/

of the parameters, their range and typical values. There is no typical limit that can be set on most parameters
but depends on experimentation. Note that except for the first three, the remaining constitute weights to
the different energy terms. Depending on their contribution to the overall energy, these weights need to be
modified so that all the terms have an influence.

m_Iterations - Maximum permitted iterations of the evolution in the range [0,c]. Typical value depends
on the initialization. The initialization must not be too different from the final output for best results. It is
usually set by trial and error and 100 iterations are usually sufficient.

m_MaxRMSChange - Maximum change in the level-set function averaged over all the pixels in the range
[0,0]. During convergence, a low RMS change indicates that the level-set function does not change position
anymore. Usually a value between 0.1 is sufficient.

m_Epsilon - Defines the smoothness of the Heaviside and Delta functions defined in Equation 3. Usually
in the range [1,o0]. We set the value to 1 in our images and obtain good results. For very high resolution
images, this value can be changed to 2 or 3.

m_Mu - The weight of the length regularization in the energy function and lies in the range [0,oc]. The exact
specification depends on the images and the expected length of the i-th segmentation boundary. It can be as
high as 10000.

m_Nu - The weight of the area regularization in the energy function and lies in the range [0,oc]. The exact
specification depends on the images and the expected length of the i-th segmentation boundary. It can be as
high as 10000.

m_Lambdal - Weights of the sum of squares of the zero mean intensities inside the contour i and lies in the
range [0,inf]. Usually set as 1 and other parameters are decided based on this normalized value.
m_Lambda?2 - Weights of the sum of squares of the zero mean intensities outside all the contours and lies in
the range [0,inf]. Usually set as 1 and other parameters are decided based on this normalized value.
m_Gamma - Penalty weight for overlap regions of the level set functions and lies in the range [0,c0].

4 Memory optimizations using kd-trees

Computationally, it is memory intensive to have N level set functions defined on the image domain. For
a large image with many small objects (such as cells in microscopy images), it becomes an intractable
problem. Hence, we make the implementation robust by defining region-of-interest (ROI), using spatial
data structures such as the kd-trees and cached lookup tables.

Each level set function (itk:: Image) is first defined in a region-of-interest (ROI) within the image domain
Q. This is illustrated in Figure 2(a). The ROI should encompass the object to be segmented and its extent
is specified by the attributes origin and size. The spacing is the same as the feature or raw intensity image.
This saves us considerable computational memory space. The centroid of each ROI region is then placed
in a kd-tree structure. In the update Equation 3 for each level set function, the overlaps of ROI regions are
calculated by querying the kd-tree for the k-nearest neighbors (k = 10) as illustrated in Figure 2(b). This
saves us considerable computational time.

Note that there is a cost associated with building the kd-tree that can be avoided for a small number of
phases. We only instantiate the kd-tree mechanism of search when there are more than 20 phases involved.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/1926/1
http://creativecommons.org/licenses/by/3.0/us/

® ®

AN
i AV
¢ & old ®

G

Region does not intersect A's children have all been searched,
best-estimate sphere B is the best estimate for entire tree
Cannot contain NN

() (b)

Figure 2: (a) ROI defined around individual cells. (b) kd-tree structure constructed from ROI centroid.

5 Usage

We begin by including the appropriate header files for the solver (both dense and sparse) and function.
Depending on the choice, either dense or sparse is required. We then define level-set image type and the
feature image type. Note that internally, these image types are cast into float type.

#include "itkScalarChanAndVeselLevelSetFunction.h"
#include "itkSparseMultiphaselevelSetImageFilter.h"

int main(int argc, char *argv[])

{

unsigned int Dimension = 2;

typedef float ScalarPixelType;

typedef itk::Image< ScalarPixelType, Dimension > LevelSetImageType;
typedef itk::Image< ScalarPixelType, Dimension > FeatureImageType;

5.1 Dense Option

If the dense option is selected, the following typedef are required.

typedef itk::ScalarACWOEdgesLevelSetFunction< LevelSetImageType,
FeatureImageType > LevelSetFunctionType;

typedef itk::MultilLevelSetImageFilterDense< LevelSetImageType,
FeaturelImageType, LevelSetFunctionType, float > MultilLevelSetType;

5.2 Sparse Option
typedef itk::ScalarACWOEdgesLevelSetFunction< LevelSetImageType,

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/1926/1
http://creativecommons.org/licenses/by/3.0/us/

5.2 Sparse Option 6

FeatureImageType > LevelSetFunctionType;
typedef itk::MultilLevelSetImageFilter< LevelSetImageType,
FeaturelImageType, LevelSetFunctionType, float > MultilevelSetType;

After initialization, it is imperative that the user specify the number of level-set functions and set the feature
image and initialization for each level set function. We illustrate our example for N = 3.

MultiLevelSetType::Pointer levelSetFilter = MultiLevelSetType::New();
levelSetFilter->SetFunctionCount (3);
levelSetFilter->SetFeaturelmage (featurelImage);

levelSetFilter->SetLevelSet (0, contourImagel);
levelSetFilter->SetLevelSet (1, contourImage?2);
levelSetFilter->SetLevelSet (2, contourImage3);

Appropriate global settings of the level set include the number of iterations, maximum permissible change
in RMS values and whether to use image spacing.

levelSetFilter->SetNumberOfIterations(atoi(argv[2]));
levelSetFilter->SetMaximumRMSError (atof (argv([3]));
levelSetFilter->SetUselImageSpacing(0);

Using a for-loop over all the level set functions, we call the i-th difference function
(levelSetFilter->GetTypedDifferenceFunction(i)) and set the corresponding attributes of
that level set function.

for (unsigned int i = 0; 1 < 3; i++)
{
levelSetFilter->GetTypedDifferenceFunction (i) ->SetEpsilon(

atof (argv[4]));
levelSetFilter->GetTypedDifferenceFunction (i) ->SetMu(atof(argv([5]));
levelSetFilter->GetTypedDifferenceFunction (i) ->SetNu(atof(argv[6]));
levelSetFilter->GetTypedDifferenceFunction (i)->SetLambdal (

atof (argv([7]));
levelSetFilter->GetTypedDifferenceFunction (i)->SetLambda2 (

atof (argv([8]));
levelSetFilter—->GetTypedDifferenceFunction (i) ->SetGamma (atof (argv[9]));
levelSetFilter->GetTypedDifferenceFunction (i) ->SetTau(atof(argv[ll]));
levelSetFilter->GetTypedDifferenceFunction (i) ->SetVolume (atof (argv[l1l2]));

The output consists of the N level set functions that can be accessed by a for-loop.

for (unsigned int i = 0; 1 < 3; i++)

{
WriterType::Pointer writer = WriterType::New();
writer->SetInput (levelSetFilter->GetLevelSet(i));
writer->SetFileName (argv[l6+i]);

try

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/1926/1
http://creativecommons.org/licenses/by/3.0/us/

writer->Update () ;

}
catch(itk::ExceptionObject & excep)

{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
return -1;

6 Results

The results in this example can be obtained by using ScalarMultiPhase2DTest.cxx on the input image
MultiphaseCells2D.png and initial level set images Multiphase2Dphil.mha. In this example, three
initial contours (circles), are evolved to segment three adjacent cells. The image can be assumed to consist
of four regions of constant intensities and hence the Chan and Vese method with the multiphase extension
can be applied. The circles are embedded in a distance map and evolved. The output is written out to the
image Multiphase2DSegl.mha, Multiphase2DSeg2.mha and Multiphase2DSeg3.mha respectively. The
parameters to the filter are set at the command line to facilitate easy modification and exploration by the
user. The command to run this particular executable is as follows:

./ScalarSinglePhase2DTest featureImage Iterations rms epsilon mu nu Lambdal Lambda2 contourImagel outpt

./ScalarMultiPhase2DTest MultiphaseCells2D.png 10 0 1 0 0 1 1 4000 0 Multiphase2Dphil.mha Multiphase2Dj

References

[1] T. Chan and L. Vese. An active contour model without edges. In Scale-Space Theories in Computer
Vision, pages 141-151, 1999.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/1926/1
http://creativecommons.org/licenses/by/3.0/us/

References 8

(a) (b)

() ®

(€3] () ®

Figure 3: Parameters: e=1,u=0,v=0,4;; =1, A, = 1 and I" = 4000. The 3 phases at iterations: (a-c) 0 (d-f) 10
(g-i) 24.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/1926/1
http://creativecommons.org/licenses/by/3.0/us/

	Introduction
	Description: Multiphase Level Sets
	Implementation
	Memory optimizations using kd-trees
	Usage
	Dense Option
	Sparse Option

	Results

