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Abstract

We propose an algorithm for tracking blood vessel segmen@oimputed Tomographic (CT) images.
Our procedure first findsore pointshat tend to concentrate along the centerlines of vessslstively,

the core points are centers of intensity plateaus in twoedsional slices through the input image. The
starting and the end point of the desired vesSar(dE) are also considered core points. The weighted
core graphis built by connecting nearby core points with edges. Edgghts are designed so that edges
of large weights are unlikely to follow a vessel segment. \Wimpute the shortest path connectihgnd

E in the core graph. The output is the result of applying shutiteg operations to this path.
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1 Introduction

According to the US Center for Disease Control and Prevemtaia, heart disease has recently been among
the leading causes of death in the USB). [ Automatic tracking of vessels in heart CT (Computed To-
mography) scans is an important step toward early deteofiptaques, aneurysms, stenoses and abnormal
configurations of coronary arteries which could potentiddlad to heart failure. Even though visual in-
spection of 2D slices is currently the most common way of mgdiagnosis based on cardiac CT scans,
reliable methods for tracking vessels in 3D imagery coulehtwally make the process less labor-intensive
by helping radiologists to correlate the information froiffedtent slices. In this paper, we propose an al-
gorithm for tracking vessels in CT scans based on the ideasqusly explored inT, 8] for the purpose of
reconstruction of coronary trees and airway trees from 38gies.

Blood vessel extraction algorithms have been receivingifsignt amount of attention in recent years
(overviews of the subject can be found ih B, 4]). A detailed discussion of prior work would increase
the length of this paper well beyond the page limit. The pdoce described in this paper is an example of a
ridge-based algorithmit generates points that tend to be densely distributengalutensity ridges and uses
this set of points as a basis for vessel reconstructionnsitieridges naturally define an approximation of
the vessel skeleton or centerline.

2 Algorithm

The input to our algorithm is a 3D greyscale image (cardias€an) and two points, the starting po8dnd

the end poin€E of the vessel to be tracked. The output is a path conne&eagd E which, in most cases,
closely tracks the blood vessel between the two points. Ast c@mmputer vision algorithms, our procedure
comes with no theoretical quality guarantee. Measuremaintse quality of the output for several test
datasets provided by the workshop organizers are givendhd®e3. There are numerous parameters and
constants used throughout the algorithm. All of them wenetuexperimentally based on the properties of
the training data, our intuition and past experience. Dextaanalysis of the dependence of the results on
these parameters is beyond the scope of this paper. Hovwmweexperiments indicate that the output is
quite stable with respect to the values of these parameters.

The algorithm proceeds in several major steps describemvbefFirst, we apply smoothing and remove
most vessels outside the heart from the input image (Se2ti)n We generate a set abre pointsthat
tend to concentrate near the centerlines of vessels (8&x@h A simple filtering procedure is applied to
remove some of the outliers from the core point set (Se&ign We build a weightedore graphwith edge
weights that tend to penalize edges that do not follow a VéSsetion2.4). Finally, the shortest path in the
core graph, connecting the starting and end point of theeVés$ound and smoothed by applying simple
shortcutting operations (Secti@®b). The resulting path is output by the algorithm.

2.1 Preprocessing

Preprocessing has three major goals: normalization of tixelwalues, cleaning up (i.e. removing the
vessels and other structures from) the lung area and mildtnmg of the input image. Normalization
allows us to reduce common artifacts of CT scans such agieariaf contrast between neighboring slices
that we encountered in our previous work. Cleanup of the kmeg reduces the size of the core point set
(Section2.2). Smoothing removes noise from the image.

First, we compute the mean intensjiyof voxels of intensity greater than 500 for each axial sli680 is
meant to be a conservative lower bound on the intensity ofxahiaside the heart. Then, we go over all
voxels of the slice and, if the intensity of the voxel jsve change it to mg®, (I —500)/(p1— 500)). Note
that, in particular, this maps all voxels whose originabimity is less than 500 to zero intensity. Let us call

Latest version available at ttiesight Journal[ htt p: // hdl . handl e. net/ 1926/ 1338]
Distributed undeCreative Commons Attribution License


http://www.insight-journal.org
http://hdl.handle.net/1926/1338
http://creativecommons.org/licenses/by/3.0/us/
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Figure 1: Left: a slice through one of the datasets. Right: game slice after the preprocessing stage;
notice that most of the area inside the lungs is black (zeéemsity). The intensity inside the heart appears
smoother as a result of using the Gaussian filter.

Figure 2: Core point sets used by our algorithm for a few ofitipeit datasets. Notice the streaks of points
running along the centerlines of the vessels.

the resulting imagé/;.

We apply the Gaussian filter with wid#12 to 74 to obtain the imagd% and the Gaussian filter with width
6v/2 to obtain the imagé4. The image used in the subsequent stages of the algorithinteised by setting
the intensity of every voxel of% such that the intensity of the corresponding voxelinis less than & to
zero. In particular, this maps most of the voxels correspantb the lung area to zero intensity (Figure

2.2 Core points

The key step of our algorithm is computation of the setofe points Core points form dense streaks
near the centerlines of vessels. Needless to say, our tlgois not perfect and the core point set contains
numerous outliers (Figur®. Note that this paper uses the approact8pfdther than that of{] to generate
the core points. Visual inspection revealed that this leadisgher quality core point sets.

The core point set consists of 3D points generated basedabdysanof two-dimensional slices of the input

three-dimensional CT scan. A slice is a 2D grey-scale imdger each slice under consideration, we
examine the evolution of connected components of the seéxelspobtained by thresholding as the threshold
decreases from the maximum to the minimum pixel intensitye¥holding the image yields union of pixels

whose intensities are greater or equal to the thresholdoufiimout this paper, we consider pixels to be
closed rectangles.

A core point is the center of mass of a topologically simplenponent resulting from thresholding at the
moment of slowest expansion due to threshold decreaseh@n wtords, when the component hits a steep
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Figure 3: Adding a new pixel (shown in grey) (connected components 8fintersecting the new pixel
are shown black). In cases (a) and (b), there is no topologggsh (thus, no topological event takes place).
In all other cases we have a topological event; (c) - a holecionaponent disappears; (d) - two components
with no holes merge into one with no holes; (e) and (f) - congmds with no holes become component with
holes; (g) - components with holes merge.

wall). In addition to its coordinates, for every core poirg vecord an uncertainty measure (an estimate of
the minimum expansion speed for its component). The detedigiven below.

Components resulting from thresholding

To analyze the connected components of the sets resulting thiresholding, we start from empty set of
pixels and insert pixels one by one in order of decreasingnsity. ByS we shall denote the union of
pixels inserted so far. 8-connectivity is used to deterntioenected components 8fand their properties
and 4-connectivity is used when dealing with the complenoérs. As a result of adding a new pixel
to S the topological structure of connected componentS ofay change: new components may appeatr,
some components may merge and some may change the topokadyoles in the components can appear
or disappear; by holes we mean bounded connected comparfahis complement). We shall call these
structural change®pological eventsExamples of topological events as well as voxels which ddonauce

a topological event when inserted irs@are shown in Figur8.

We keep track of the connected component§ osing the disjoint-set datastructur® Chapter 21]. For
each pixelp that is inserted, we look up the connected componenilwdt intersecp and merge them and
p into a single component. Throughout the process, for eactpooent~ of Swe keep track of:

- Topology (i.e. the number of holes) Bf

- Size (number of pixels if)

- Center of mass df

- A binary boundary flagndicating whetheF contains a pixel on the boundary of the slice.

All of the above quantities are updated each time a new pikeinserted int&. Logical OR is performed on
the boundary flags of components interseciirtg obtain the boundary flag of the component contaimng
after its insertion int®. The size of the new component is obtained by summing the sizitae components
adjacent top and adding 1 (to account fqa). Its center of mass can be obtained by properly weighting
(proportionally to the size) the centers of mass of the a&jacomponents and thgs coordinates. Finally,
the number of holes of the new component can be determineddlasd. If all 8 neighbors op are outside

S a new component with no holes (containing opjyis introduced. If all 4 edge neighbors pfare already

in S a hole disappears from the component that will confaaiter it is added t&. Otherwise, the number
of holes of the new component is equahté b — a, wherea stands for the number of components adjacent
to p before it is added t&, his the total number of holes these components havebatahotes the number
of components in the intersection of the boundarypaind the se§just before inserting.

Admissible components

An admissible componemtf Sis a connected component of no more than 900 pixels, with teshend
containing no boundary pixels. 900 is intended to be the uppand on the size of the section through
the vessel of interest. With each admissible compoRente record its characteristic at the moment of its
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Figure 4: Computing 2D contours. Filled disks are centerpixdls in a connected componenrtof the
setS circles are centers of other pixels and the thick line isdbwetour defined by. By agrid interval

we mean an interval connecting the center of a pixel with #mar of one of its four neighbors (on the
right, on the left, below and abovekrid squaresare squares formed by four grid intervals. The contouring
algorithm generates one or two contour intervals for eachgguareZ with at least one vertex iR and at
least one vertex outside. The intervals connect pairs of points on the edge2 of a way depending on
which vertices o are inF and which are not (all 14 possible cases are shown on the.rifine endpoints

of the intervals are computed as points with intensity edqoidhe threshold, assuming that the intensity
varies linearly along the grid intervals.

slowest expansiosince the last topological event involving that componé&mipansion speed is intended to
measure the average speed with which the boundaFyefpands as the threshold decreases. Siisea
discrete set (union of pixels), we estimate the expansieedpf an admissible compondntbased on the
growth of thecontourdefined by that component rather than the component itselfoimpute contours, we
employ the classical Marching Squares algorithm (desdnbé-igure4 for completeness).

The expansion speed of a componénat thresholdy is defined as—% whereA(t) is the area

enclosed by the contour defined Byand isovalue and P(t) is the perimeter of that contour. We ap-
proximate the expansion speed betwgeandt, using the following formula based on the finite difference
approximation of the derivativéA(t) /dt:

> Altz) —Aty)

R(F;ty,t) := m (1)

If ty = tp, we setR(F;ty,tp) to oo

The expansion speed estimat®ié computed whenever a new pixels added to an admissible component
F, with t, equal to the intensity op andt; equal to the intensity of the latest pixel that was adde# to
beforep (Figure5). For any admissible componet we keep track of:

- The minimum value of the expansion speed estimate (derimtd®(F )) since the last topological event
involving F,

- The center of magsl(F) of F for the threshold that yields the minimum expansion speed.

Whenever an admissible componéntundergoes a topological event or becomes inadmissM|(&; ) is
inserted into the set of core points. Timecertainty measurgiven byR(F) is recorded with that point.

Core point set

We experimented with a few ways of selecting slices for thalyesis using the above described method.
For example, one can use all axis oriented slices to obtainltseclose to those reported here. Using more
slices could improve the quality of the output at the expesfseinning time. The results reported in this
paper were obtained using slices perpendicular to vectitsagordinates in{0,1,—1}. For the purpose
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Figure 5: Computing the expansion speed of a compondnaidienp is added to the component. The inner
polygonal line is the contour corresponding to isovalu@ntensity at the last pixel added befgoeand the
outer line is the contour corresponding to isovahiéntensity of p). To compute the expansion speed of
F, we divide the area between the two contourgibyt, times the length of the contour corresponding to
isovaluetl%t2 (half way between the two shown in the figure).

of core point generation, we assumed that the voxel centars imteger coordinates (thus, we ignored
the anisotropy). Pairs of consecutive slices were 1 apartdoh of the slicing directions and the spacing
between the samples was the same as in the original dateslen@ileach dimension).

For each of the slicing directions, we generate the coreteits from the corresponding family of paral-
lel slices and select 1800 points of lowest uncertainty (i.e. lowe’(F) described in the previous sec-
tion). This results in 19800 points since there are 13 slicing directions (perperaido vectorg1,0,0),
(0,1,0), (0,0,1), (1,1,0), (0,1,1), (1,0,2), (1,-1,0), (0,1,-1), (1,0,—-1), (1,1,1), (1,-1,1), (1,1,-1),
(1,-1,-1)).

2.3 Filtered core point set

The core point set is cleaned up to remove some of the outligrs filtering procedure works as follows.
We build the Euclidean minimum spanning forgstof the graph with vertices at the core points and with
edges connecting any pair of core points no more th@mf away. Now, we treat leaf vertices @f as
branch endpoints. The branch of a leaf vertex v is definedesithple path (i.e. path that uses no vertex
more than once) in the forest starting at v and ending at @xeiftdegree other than 2. The length of the
branch is defined as the number of edges of the branch. Winidyaselect the shortest branch and remove
its edges from theF until it has no branches of length 4 or less. Finally, we reenal isolated (degree-0)
vertices in the resulting graph from the core point set olotgi thefiltered core point set

2.4 Core graph

The vertex set of the core graph is obtained by adding théirgjaand end point$ and E) of the ves-
sel to be traced to the set of filtered core points. The edgékeotore graphy (whereD, a positive
real number, is a parameter that allows one to control thebeurof edges of the graph) connect pairs
of vertices that are no more thah mm away. Note that we could use the full graph; the bobndn
the edge length is introduced only to reduce the number oésdmd therefore the running time. The
weights are assigned to the edges according to the followites. Edges of lengtid <= 0.9mm are
assigned the weight ad/100. For an edge connecting a pomiwith point g, the weight is given by

min pa2 — (pg-Tp)2,\/|Pal? — (Pg- Tg)2 ¢ + 0.8 |pg|, whereT, and Ty are estimated tangent vectors
p q p q

at p andg. Note thaty/|pg2— (pg-Ts)? is the length of the component gfg perpendicular tdTs for
se {p,q}. Intuitively, the edge weights are designed to penalizg ledges and to additionally penalize
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Table 1: Average overlap per dataset

Dataset oV OF oT Avg.

nr. % score rank| % score rank| % score  rank| rank
8 90.6 62.4 - | 482 340 - | 927 46.5 - -
9 93.2 726 - | 76.1 648 — | 947 724 - -
10 91.4 58.3 - | 335 16.9 - | 914 58.2 - -
11 947 575 - | 286 248 — | 947 485 - -
12 89.2 46.1 - | 248 13.9 — | 93.0 46.8 - -
13 98.3 70.8 - | 925 578 — | 98.7 744 - -
14 98.0 72.0 - | 45.2 38.2 - | 979 615 - -
15 99.7 85.2 - | 925 723 — | 99.7 748 - -
16 96.9 62.1 - | 54.6 403 - |1 972 61.1 - -
17 90.2 64.1 - | 154 204 - | 90.2 47.3 - -
18 98.3 86.6 - | 776 64.1 — | 983 74.2 - -
19 98.5 84.0 - | 73.1 633 — | 985 74.2 - -
20 93.3 58.8 - | 46.0 26.3 - | 93.3 46.8 - -
21 98.1 80.4 - | 911 820 - | 98.2 745 - -
22 99.6 87.4 - | 98.0 86.5 - | 996 873 - -
23 98.4 73.2 - | 66.2 46.0 - | 984 617 - -
Avg. 955 70.1 - | 60.2 47.0 - | 96.0 631 - -

edgespqg whose direction is far away from the estimated tangent time@t bothp andq. Note that there
is a sharp discontinuity in the weight formula: weights ofesl of length slightly above.@mm are much
higher than weights of edges of length slightly belo®rim. Thus, to some extent, the algorithm follows
the approach off]: it finds long dense streaks of core points and then conheatigh gaps in the streaks.

The tangent vector, at a pointp (required for the edge weight computation) is estimatedgithe least
squares line fit to filtered core points less than 2mm away fpoif}, is a unit vector parallel to the optimal
line. We setT, to zero forp € {S E}. This means that the terms involvifig and Tg are not used when
computing the edge weights.

2.5 Shortest path and shortcutting

In order to track the vessel between poigendE, we find the shortest path in the core graphconnecting
SandE using the Dijkstra’s algorithm?]. If such a path does not exist (which does not happen for &ny o
the datasets provided by the workshop organizers) we attienfipd the shortest path in the core graph with
doubled edge length bound, i.e. we consider, Cs4 etc until the path is found.

We then apply a simple shortcutting technique in order torowg the smoothness of the output path. A
shortcutting operation is equivalent to removing a vertakér than the first or the last) from the path. We
select the vertex to be removed based on a simple anglei@nitdf vo, V1, ... vy are the consecutive points
along the current path, we search far {1,2,...,N — 1} such that the anglév;_1v;v; 1 is the smallest. If
this angle is less or equal than 90 degrees, we remdvem the path and apply the same procedure to the
resulting path. If the angle is more than 90 degrees, thealiting process is terminated.

3 Experimental results

The results obtained for the test datasets provided by thisNop organizers are shown in Tables 1,2 and
3. The process of collecting the data and determining thergtdaruth is described irp].
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