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Abstract

We propose an algorithm for tracking blood vessel segments in Computed Tomographic (CT) images.
Our procedure first findscore pointsthat tend to concentrate along the centerlines of vessels. Intuitively,
the core points are centers of intensity plateaus in two-dimensional slices through the input image. The
starting and the end point of the desired vessel (SandE) are also considered core points. The weighted
core graphis built by connecting nearby core points with edges. Edge weights are designed so that edges
of large weights are unlikely to follow a vessel segment. We compute the shortest path connectingSand
E in the core graph. The output is the result of applying shortcutting operations to this path.
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1 Introduction

According to the US Center for Disease Control and Prevention data, heart disease has recently been among
the leading causes of death in the USA [6]. Automatic tracking of vessels in heart CT (Computed To-
mography) scans is an important step toward early detectionof plaques, aneurysms, stenoses and abnormal
configurations of coronary arteries which could potentially lead to heart failure. Even though visual in-
spection of 2D slices is currently the most common way of making diagnosis based on cardiac CT scans,
reliable methods for tracking vessels in 3D imagery could eventually make the process less labor-intensive
by helping radiologists to correlate the information from different slices. In this paper, we propose an al-
gorithm for tracking vessels in CT scans based on the ideas previously explored in [7, 8] for the purpose of
reconstruction of coronary trees and airway trees from 3D images.

Blood vessel extraction algorithms have been receiving significant amount of attention in recent years
(overviews of the subject can be found in [1, 3, 4]). A detailed discussion of prior work would increase
the length of this paper well beyond the page limit. The procedure described in this paper is an example of a
ridge-based algorithm: it generates points that tend to be densely distributed along intensity ridges and uses
this set of points as a basis for vessel reconstruction. Intensity ridges naturally define an approximation of
the vessel skeleton or centerline.

2 Algorithm

The input to our algorithm is a 3D greyscale image (cardiac CTscan) and two points, the starting pointSand
the end pointE of the vessel to be tracked. The output is a path connectingSandE which, in most cases,
closely tracks the blood vessel between the two points. As most computer vision algorithms, our procedure
comes with no theoretical quality guarantee. Measurementsof the quality of the output for several test
datasets provided by the workshop organizers are given in Section 3. There are numerous parameters and
constants used throughout the algorithm. All of them were tuned experimentally based on the properties of
the training data, our intuition and past experience. Detailed analysis of the dependence of the results on
these parameters is beyond the scope of this paper. However,our experiments indicate that the output is
quite stable with respect to the values of these parameters.

The algorithm proceeds in several major steps described below. First, we apply smoothing and remove
most vessels outside the heart from the input image (Section2.1). We generate a set ofcore pointsthat
tend to concentrate near the centerlines of vessels (Section 2.2). A simple filtering procedure is applied to
remove some of the outliers from the core point set (Section2.3). We build a weightedcore graphwith edge
weights that tend to penalize edges that do not follow a vessel (Section2.4). Finally, the shortest path in the
core graph, connecting the starting and end point of the vessel is found and smoothed by applying simple
shortcutting operations (Section2.5). The resulting path is output by the algorithm.

2.1 Preprocessing

Preprocessing has three major goals: normalization of the voxel values, cleaning up (i.e. removing the
vessels and other structures from) the lung area and mild smoothing of the input image. Normalization
allows us to reduce common artifacts of CT scans such as variation of contrast between neighboring slices
that we encountered in our previous work. Cleanup of the lungarea reduces the size of the core point set
(Section2.2). Smoothing removes noise from the image.

First, we compute the mean intensityµ of voxels of intensity greater than 500 for each axial slice.500 is
meant to be a conservative lower bound on the intensity of a voxel inside the heart. Then, we go over all
voxels of the slice and, if the intensity of the voxel isI , we change it to max(0,(I −500)/(µ−500)). Note
that, in particular, this maps all voxels whose original intensity is less than 500 to zero intensity. Let us call
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Figure 1: Left: a slice through one of the datasets. Right: the same slice after the preprocessing stage;
notice that most of the area inside the lungs is black (zero intensity). The intensity inside the heart appears
smoother as a result of using the Gaussian filter.

Figure 2: Core point sets used by our algorithm for a few of theinput datasets. Notice the streaks of points
running along the centerlines of the vessels.

the resulting imageV1.

We apply the Gaussian filter with width
√

2 toV1 to obtain the imageV2 and the Gaussian filter with width
6
√

2 to obtain the imageV3. The image used in the subsequent stages of the algorithm is obtained by setting
the intensity of every voxel ofV2 such that the intensity of the corresponding voxel inV3 is less than 0.5 to
zero. In particular, this maps most of the voxels corresponding to the lung area to zero intensity (Figure1).

2.2 Core points

The key step of our algorithm is computation of the set ofcore points. Core points form dense streaks
near the centerlines of vessels. Needless to say, our algorithm is not perfect and the core point set contains
numerous outliers (Figure2). Note that this paper uses the approach of [8] rather than that of [7] to generate
the core points. Visual inspection revealed that this leadsto higher quality core point sets.

The core point set consists of 3D points generated based on analysis of two-dimensional slices of the input
three-dimensional CT scan. A slice is a 2D grey-scale image.For each slice under consideration, we
examine the evolution of connected components of the set of pixels obtained by thresholding as the threshold
decreases from the maximum to the minimum pixel intensity. Thresholding the image yields union of pixels
whose intensities are greater or equal to the threshold. Throughout this paper, we consider pixels to be
closed rectangles.

A core point is the center of mass of a topologically simple component resulting from thresholding at the
moment of slowest expansion due to threshold decrease (in other words, when the component hits a steep

Latest version available at theInsight Journal[ http://hdl.handle.net/1926/1338]
Distributed underCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/1926/1338
http://creativecommons.org/licenses/by/3.0/us/


2.2 Core points 4

(a) (b) (c) (d)
(g)(f)(e)

Figure 3: Adding a new pixel (shown in grey) toS (connected components ofS intersecting the new pixel
are shown black). In cases (a) and (b), there is no topology change (thus, no topological event takes place).
In all other cases we have a topological event; (c) - a hole in acomponent disappears; (d) - two components
with no holes merge into one with no holes; (e) and (f) - components with no holes become component with
holes; (g) - components with holes merge.

wall). In addition to its coordinates, for every core point we record an uncertainty measure (an estimate of
the minimum expansion speed for its component). The detailsare given below.

Components resulting from thresholding

To analyze the connected components of the sets resulting from thresholding, we start from empty set of
pixels and insert pixels one by one in order of decreasing intensity. ByS we shall denote the union of
pixels inserted so far. 8-connectivity is used to determineconnected components ofSand their properties
and 4-connectivity is used when dealing with the complementof S. As a result of adding a new pixel
to S, the topological structure of connected components ofS may change: new components may appear,
some components may merge and some may change the topology (i.e. holes in the components can appear
or disappear; by holes we mean bounded connected componentsof the complement). We shall call these
structural changestopological events. Examples of topological events as well as voxels which do not induce
a topological event when inserted intoSare shown in Figure3.

We keep track of the connected components ofS using the disjoint-set datastructure [2, Chapter 21]. For
each pixelp that is inserted, we look up the connected components ofSthat intersectp and merge them and
p into a single component. Throughout the process, for each componentF of Swe keep track of:
- Topology (i.e. the number of holes) ofF
- Size (number of pixels inF)
- Center of mass ofF
- A binary boundary flagindicating whetherF contains a pixel on the boundary of the slice.

All of the above quantities are updated each time a new pixelp is inserted intoS. Logical OR is performed on
the boundary flags of components intersectingp to obtain the boundary flag of the component containingp
after its insertion intoS. The size of the new component is obtained by summing the sizes of the components
adjacent top and adding 1 (to account forp). Its center of mass can be obtained by properly weighting
(proportionally to the size) the centers of mass of the adjacent components and thep’s coordinates. Finally,
the number of holes of the new component can be determined as follows. If all 8 neighbors ofp are outside
S, a new component with no holes (containing onlyp) is introduced. If all 4 edge neighbors ofp are already
in S, a hole disappears from the component that will containp after it is added toS. Otherwise, the number
of holes of the new component is equal toh+b−a, wherea stands for the number of components adjacent
to p before it is added toS, h is the total number of holes these components have andb denotes the number
of components in the intersection of the boundary ofp and the setS just before insertingp.

Admissible components

An admissible componentof S is a connected component of no more than 900 pixels, with no holes and
containing no boundary pixels. 900 is intended to be the upper bound on the size of the section through
the vessel of interest. With each admissible componentF, we record its characteristic at the moment of its
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Figure 4: Computing 2D contours. Filled disks are centers ofpixels in a connected componentF of the
setS, circles are centers of other pixels and the thick line is thecontour defined byF. By a grid interval
we mean an interval connecting the center of a pixel with the center of one of its four neighbors (on the
right, on the left, below and above).Grid squaresare squares formed by four grid intervals. The contouring
algorithm generates one or two contour intervals for each grid squareZ with at least one vertex inF and at
least one vertex outsideF. The intervals connect pairs of points on the edges ofZ in a way depending on
which vertices ofZ are inF and which are not (all 14 possible cases are shown on the right). The endpoints
of the intervals are computed as points with intensity equalto the threshold, assuming that the intensity
varies linearly along the grid intervals.

slowest expansionsince the last topological event involving that component.Expansion speed is intended to
measure the average speed with which the boundary ofF expands as the threshold decreases. SinceF is a
discrete set (union of pixels), we estimate the expansion speed of an admissible componentF based on the
growth of thecontourdefined by that component rather than the component itself. To compute contours, we
employ the classical Marching Squares algorithm (described in Figure4 for completeness).

The expansion speed of a componentF at thresholdt0 is defined as−dA(t)/dt|t=t0
P(t) whereA(t) is the area

enclosed by the contour defined byF and isovaluet and P(t) is the perimeter of that contour. We ap-
proximate the expansion speed betweent1 andt2 using the following formula based on the finite difference
approximation of the derivativedA(t)/dt:

R̄(F ; t1, t2) :=
A(t2)−A(t1)

(t1− t2)P( t1+t2
2 )

. (1)

If t1 = t2, we setR̄(F; t1, t2) to ∞.

The expansion speed estimate (1) is computed whenever a new pixelp is added to an admissible component
F, with t2 equal to the intensity ofp and t1 equal to the intensity of the latest pixel that was added toF
beforep (Figure5). For any admissible componentF, we keep track of:
- The minimum value of the expansion speed estimate (denotedby R(F)) since the last topological event
involving F,
- The center of massM(F) of F for the threshold that yields the minimum expansion speed.

Whenever an admissible componentF undergoes a topological event or becomes inadmissible,M(F) is
inserted into the set of core points. Theuncertainty measuregiven byR(F) is recorded with that point.

Core point set

We experimented with a few ways of selecting slices for the analysis using the above described method.
For example, one can use all axis oriented slices to obtain results close to those reported here. Using more
slices could improve the quality of the output at the expenseof running time. The results reported in this
paper were obtained using slices perpendicular to vectors with coordinates in{0,1,−1}. For the purpose
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p

last pixel added before p

Figure 5: Computing the expansion speed of a component ofF whenp is added to the component. The inner
polygonal line is the contour corresponding to isovaluet1 (intensity at the last pixel added beforep) and the
outer line is the contour corresponding to isovaluet2 (intensity of p). To compute the expansion speed of
F, we divide the area between the two contours byt1− t2 times the length of the contour corresponding to
isovaluet1+t2

2 (half way between the two shown in the figure).

of core point generation, we assumed that the voxel centers have integer coordinates (thus, we ignored
the anisotropy). Pairs of consecutive slices were 1 apart for each of the slicing directions and the spacing
between the samples was the same as in the original dataset (1along each dimension).

For each of the slicing directions, we generate the core point sets from the corresponding family of paral-
lel slices and select 15,000 points of lowest uncertainty (i.e. lowestR(F) described in the previous sec-
tion). This results in 195,000 points since there are 13 slicing directions (perpendicular to vectors(1,0,0),
(0,1,0), (0,0,1), (1,1,0), (0,1,1), (1,0,1), (1,−1,0), (0,1,−1), (1,0,−1), (1,1,1), (1,−1,1), (1,1,−1),
(1,−1,−1)).

2.3 Filtered core point set

The core point set is cleaned up to remove some of the outliers. The filtering procedure works as follows.
We build the Euclidean minimum spanning forestF of the graph with vertices at the core points and with
edges connecting any pair of core points no more than 0.9mm away. Now, we treat leaf vertices ofF as
branch endpoints. The branch of a leaf vertex v is defined as the simple path (i.e. path that uses no vertex
more than once) in the forest starting at v and ending at a vertex of degree other than 2. The length of the
branch is defined as the number of edges of the branch. We iteratively select the shortest branch and remove
its edges from theF until it has no branches of length 4 or less. Finally, we remove all isolated (degree-0)
vertices in the resulting graph from the core point set obtaining thefiltered core point set.

2.4 Core graph

The vertex set of the core graph is obtained by adding the starting and end point (S and E) of the ves-
sel to be traced to the set of filtered core points. The edges ofthe core graphCD (whereD, a positive
real number, is a parameter that allows one to control the number of edges of the graph) connect pairs
of vertices that are no more thanD mm away. Note that we could use the full graph; the boundD on
the edge length is introduced only to reduce the number of edges and therefore the running time. The
weights are assigned to the edges according to the followingrules. Edges of lengthd <= 0.9mm are
assigned the weight ofd/100. For an edge connecting a pointp with point q, the weight is given by

min
{

√

|~pq|2− (~pq·Tp)2,
√

|~pq|2− (~pq·Tq)2
}

+ 0.8∗ |p̄q|, whereTp andTq are estimated tangent vectors

at p and q. Note that
√

|~pq|2− (~pq·Ts)2 is the length of the component of~pq perpendicular toTs for
s∈ {p,q}. Intuitively, the edge weights are designed to penalize long edges and to additionally penalize
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Table 1: Average overlap per dataset
Dataset OV OF OT Avg.

nr. % score rank % score rank % score rank rank
8 90.6 62.4 – 48.2 34.0 – 92.7 46.5 – –
9 93.2 72.6 – 76.1 64.8 – 94.7 72.4 – –
10 91.4 58.3 – 33.5 16.9 – 91.4 58.2 – –
11 94.7 57.5 – 28.6 24.8 – 94.7 48.5 – –
12 89.2 46.1 – 24.8 13.9 – 93.0 46.8 – –
13 98.3 70.8 – 92.5 57.8 – 98.7 74.4 – –
14 98.0 72.0 – 45.2 38.2 – 97.9 61.5 – –
15 99.7 85.2 – 92.5 72.3 – 99.7 74.8 – –
16 96.9 62.1 – 54.6 40.3 – 97.2 61.1 – –
17 90.2 64.1 – 15.4 20.4 – 90.2 47.3 – –
18 98.3 86.6 – 77.6 64.1 – 98.3 74.2 – –
19 98.5 84.0 – 73.1 63.3 – 98.5 74.2 – –
20 93.3 58.8 – 46.0 26.3 – 93.3 46.8 – –
21 98.1 80.4 – 91.1 82.0 – 98.2 74.5 – –
22 99.6 87.4 – 98.0 86.5 – 99.6 87.3 – –
23 98.4 73.2 – 66.2 46.0 – 98.4 61.7 – –

Avg. 95.5 70.1 – 60.2 47.0 – 96.0 63.1 – –

edges ¯pq whose direction is far away from the estimated tangent direction at bothp andq. Note that there
is a sharp discontinuity in the weight formula: weights of edges of length slightly above 0.9mm are much
higher than weights of edges of length slightly below 0.9mm. Thus, to some extent, the algorithm follows
the approach of [7]: it finds long dense streaks of core points and then connect through gaps in the streaks.

The tangent vectorTp at a pointp (required for the edge weight computation) is estimated using the least
squares line fit to filtered core points less than 2mm away fromp. Tp is a unit vector parallel to the optimal
line. We setTp to zero forp ∈ {S,E}. This means that the terms involvingTS andTE are not used when
computing the edge weights.

2.5 Shortest path and shortcutting

In order to track the vessel between pointsSandE, we find the shortest path in the core graphC16 connecting
SandE using the Dijkstra’s algorithm [2]. If such a path does not exist (which does not happen for any of
the datasets provided by the workshop organizers) we attempt to find the shortest path in the core graph with
doubled edge length bound, i.e. we considerC32, C64 etc until the path is found.

We then apply a simple shortcutting technique in order to improve the smoothness of the output path. A
shortcutting operation is equivalent to removing a vertex (other than the first or the last) from the path. We
select the vertex to be removed based on a simple angle criterion. If v0,v1, . . .vN are the consecutive points
along the current path, we search fori ∈ {1,2, . . . ,N−1} such that the angle6 vi−1vivi+1 is the smallest. If
this angle is less or equal than 90 degrees, we removevi from the path and apply the same procedure to the
resulting path. If the angle is more than 90 degrees, the shortcutting process is terminated.

3 Experimental results

The results obtained for the test datasets provided by the Workshop organizers are shown in Tables 1,2 and
3. The process of collecting the data and determining the ground truth is described in [5].
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