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Abstract. Automatic segmentation of liver tumorous regions often fails
due to high noise and large variance of tumors. In this work, a semi-
automatic algorithm is proposed to segment liver tumors from computed
tomography (CT) images. To cope with the variance of tumors, their
intensity probability density functions (PDF) are modeled as a bag of
Gaussians unlike the previous works where the tumor is modeled as a
single Gaussian, and employ a three-dimensional seeded region growing
(SRG) method. The bag of Gaussians are initialized at manually selected
seeds and updated during growing process iteratively. There are two
criteria to be fulfilled for growing: one is the Bayesian decision rule, and
the other is a model matching measure. Once the growing is terminated,
morphological operations are performed to refine the result. This method,
showing promising performance, has been evaluated using ten CT scans
of livers with twenty tumors provided by the organizer of the 3D Liver
Tumor Segmentation Challenge 2008.

1 Introduction

Liver cancer is the sixth most common cancer worldwide and the third most
common cause of death from cancer [1]. In order to give effective treatment to
patients, doctors will need to know the volumes of the tumors. Thus, the determi-
nation of the tumor volumes becomes a crucial task in clinical practice. Usually
radiologists segment the tumors manually slice by slice from computed tomog-
raphy (CT) scans, and then calculate the volumes. However, it is a tedious and
time-consuming task. Hence, developing a robust and efficient computer-aided
tumor segmentation system has attracted more and more research attention.

Despite these research efforts, automatic liver tumor segmentation is, still
rather challenging due to low contrast between normal liver tissue and lesion
tissue, unclear boundary around the lesion, lesion shape variations, etc. Also



liver tumors have quite different appearance in different CT scanning phases,
i.e., early phase, arterial phase, portal venous phase and delayed phase.

Most recently, Seo proposed a multi-stage automatic hepatic tumor segmen-
tation method [2]. It firstly segments the liver, and removes hepatic vessels from
the liver. Then, a hepatic tumor is segmented by using the optimal threshold
value with minimum total probability error. Active contour algorithm has been
widely used in tumor segmentation. Yim et al. used watershed and active con-
tour algorithms to do volumetric study on ten hepatic metastatic lesions in 36
CT slices in total [3]. Lu et al. also used the active contour with an manually-
specified initial contour to obtain the tumor boundary [4]. Zhao et al. developed
a region growing algorithm using intensity distributions of the seed ROI provided
by users to delineate liver metastases. They also used specific shape constraints
to prevent the region growing from leaking into surrounding tissues [5]. However,
there are some limitations of these existing studies. Most of them segment the
tumor in 2D. When dealing with CT volumetric data, they have to segment slice
by slice, and then combine the 2D results into a volume. Even worse, snake and
region growing may require user to specify the initial configuration for every
slice. Currently these methods were tested on different data sets and evaluated
using different standards. Hence it is difficult to compare their performance.

To benchmark 3D liver tumor segmentation methods, the organizer of “3D
Liver Tumor Segmentation Challenge 2008”[6] provided CT scans of livers from
four patients with ten lesions manual segmented as training data, together with
other six CT scans of livers with ten lesions (not segmented) as the testing data.

We participated in this competition and this paper reports our work. Our
method is based on the following observations on liver and tumor CT images.
First, the average intensity of tumor region is different from that of normal liver
region. There are usually boundaries between tumor and the liver, although
they are not so sharp everywhere. Some tumors even have some connection
with adjacent tissues without recognizable boundaries, such as normal liver,
muscle, stomach. Second, tumor regions are usually inhomogeneous with some
noise inside. Third, the difference between two adjacent slices is small. That is
because slice thickness of all the data set is relatively small.

With these properties in mind, we propose to represent tumors in terms of a
bag of intensity distribution models. We introduce a semi-automatic algorithm
using a 3D seeded region growing (SRG) technique based on the Bayesian rule
and a model matching criterion. Details about the method are described in
Section 2. Segmentation and evaluation result for method benchmarking are
shown in Section 3, followed by some discussion and conclusion in Section 4.

2 Methodology

The main idea of the proposed algorithm is to extract the desired lesion from
the 3D volume data using Bayesian-rule based 3D region growing starting from
multiple seeds specified by the user. The algorithm is based on the assumption
that the intensity distribution of the lesion can be modeled as Gaussian distri-



butions. Figure 1 shows the intensity distribution of the normal liver region and
the tumorous region of one of the patient data sets. To cope with the variance of
tumors, we employ a bag of Gaussians, which is however different from existing
works where the tumor is modeled by a single Gaussian.
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Fig. 1. Example intensity distributions of liver and lesion.

Figure 2 summarizes the proposed algorithm which includes three stages. In
the first stage, the input images are preprocessed with smoothing and noise re-
moval. In the second stage, the proposed 3D region growing algorithm is applied.
The third stage is post-processing which includes morphological operations such
as hole removal. Details will be discussed in the following sections.

2.1 Region Growing

Region growing algorithm is used to look for similar voxels as the seeds provided
by users. The seeds belong to two classes. One class is normal liver, and the
other is lesion. The Bayesian rule-based region growing works as a classifier to
classify the voxels into these two classes.

Given two classes of voxels, the normal liver ω1 and the lesion ω2, their
prior probabilities are denoted as P (ωj), and their class-conditional probability
density function is p(I|ωj), j = 1, 2, respectively, where I is the data in the
feature space. The posterior probability of I is given by

P (ωj |I) =
p(I|ωj)P (ωj)

p(I)
, j = 1, 2, (1)
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Fig. 2. Flowchart of the proposed algorithm.



with evidence p(I) given by

p(I) =
2∑

j=1

p(I|ωj)P (ωj). (2)

The Bayesian decision rule for minimizing the probability of error is [7]:

Decide I ∈ ω1 if P (ω1, I) > P (ω2, I); otherwise decide I ∈ ω2. (3)

Substituting Equations 1 and 2 into Equation 3, we obtain an equivalent rule
in the terms of class-conditional probability density functions:

Decide I ∈ ω1 if p(I|ω1)P (ω1) > p(I|ω2)P (ω2); otherwise decide I ∈ ω2. (4)

Specially, if P (ω1) = P (ω2), then

Decide I ∈ ω1 if p(I|ω1) > p(I|ω2); otherwise decide I ∈ ω2. (5)

In this case, it is assumed that the normal liver class and the lesion class have
the same priors. Therefore, the Bayesian rule is applied in form of Equation 5.

As mentioned before, the intensity, denoted as x, of the voxel are considered
as the feature of the point. The class-conditional probability density function
(PDF) of the liver and lesion are estimated beforehand and assumed as two
Gaussians with parameter µj , σj ,j = 1, 2, being the mean and the variance,
respectively:

p(x|ωj) =
1√

2πσj

exp(−1
2
(x− µj)2/σ2

j ), (6)

In this case,

Decide x ∈ ω1 if p(x|ω1) > p(x|ω2); otherwise decide x ∈ ω2. (7)

Based on the above theory, the region growing algorithm is used to clas-
sify voxels into two classes: liver and lesion. The liver class is modeled by a
single Gaussian, whereas the tumor class is modeled by multiple Gaussians.
More specifically, the algorithm starts by specifying several seed points. One of
the seeds Sl should be located inside the liver region. And at least one seed
S1

t , ..., Sn
t (n > 0) should be located inside the lesion. For inhomogeneous lesion,

it is suggested to choose more seeds scattered inside the lesion. Furthermore, the
seeds should be chosen away from the edges between lesion and liver.

Then these seeds are used to set up initial configurations. Define a neighbor-
hood of a voxel in 3D is a 5× 5× 5 cube centered at it. It is assumed that the
neighborhood of each seed is inside the liver or the lesion. First, the parameters
{µl, σl} of Gaussian model Gl are estimated using all the 11 × 11 × 11 neigh-
boring voxels of the liver seed point as samples. Second, for each seed point in



the lesion, Gi
t{µi

t, σ
i
t} are also estimated. Gj

t and Gk
t are considered as similar,

if |µj
t − µk

t | is less than a predefined Gaussian combination threshold Tc. Then
all the similar Gaussians of the lesion are combined by calculating new values of
parameter G′it {µ′it , σ′it }(i = 1, ..., m).

With initial Gaussian models of liver and lesion obtained from previous step,
the 3D region growing algorithm is performed starting from the seed points.
It adds neighboring voxels one at a time into the regions if they have similar
properties with respect to the predefined criteria. Here two criteria are used to
measure the similarity.

1. The intensity of the voxel should be accepted by one of the Gaussians of the
lesion G′it . Equation 7 is used to make the decision.

2. One of the intensity distribution models of lesions and that of the current
voxel should be similar. The intensity distribution of a specific point in the
3D image is estimated by the intensity histogram within its 3D neighbor-
hood. Assume the histogram is hi(x), and histogram of current point is h′(x).
Here, the Bhattacharyya distance [8] is used to measure the similarity.

BC(hi, h
′) =

∑
x

√
hi(x)h′(x). (8)

It is always between 0 and 1, 1 indicating the strongest similarity between
the histograms, 0 the weakest. In the implementation, a predefined threshold
Td is used to discard distinguish voxels.

Voxels which meet both criteria are considered as a part of the lesion and
added into the region. Their intensity values are also used to update the pa-
rameters of the corresponding Gaussian model G′it {µ′it , σ′it }. The region growing
algorithm will examine all the connected voxels one by one until the region fixes.

2.2 Pre-processing

Before applying region growing algorithm, the CT images are smoothed in or-
der to reduce some noise. There are always some noise all over the CT images,
especially when the spacing is very small. The image filter, “CurvatureAnisotrop-
icDiffusionImageFilter”, which is implemented by ITK [9], is used. The purpose
of this filter is to smooth the image but preserve the edges at the same time such
that the regions of lesions won’t be damaged because of smoothing.

2.3 Post-processing

Although smoothing has already been applied on the input CT images, there are
still some noise voxels whose intensity is quite different from the desired lesion.
Therefore, volumes obtained by region growing may have some small holes inside
it. Morphological operations are performed on the volumes to remove them.



3 Experiments and Results

The program was developed in C++ using ITK [9]. It was executed to segment
the lesions one at a time. It requires several inputs, such as a set of CT scans,
coordinates of the seed points, Gaussian combination threshold Tc, and Bhat-
tacharyya distance threshold Td. As mentioned before, the seeds in the lesion
should be scattered. They are usually chosen by examining whether their inten-
sities are representative of all the voxels in the lesion. Tc is set by experience.
If the lesion region is relatively homogeneous, only one Gaussian model will be
used, and thus Tc is set to a large number. When multiple Gaussians are used,
the range of intensity variation inside the lesion has to be estimated, and Tc is set
to a small number according to the range. In only a few cases in this experiment,
two or three Gaussians are used and Tc is set to around 3.

Td whose value is in the range of 0 to 1 is usually set by experiment. If the
segmentation result has serious leakage problems, the threshold should be set to
a larger number. On the other hand, if the region has not grown widely enough,
the threshold should be set to a smaller number.

The proposed algorithm has been trained on CT images of four patients with
ten tumors in the training data, and evaluated on CT images of six patients with
ten tumors in testing data. Figure 3 shows the segmented lesion boundaries for
a selection of slices of different patients in the training data, compared with seg-
mentation reference. The segmentation results of the testing data were compared
to manual expert segmentation and given a score for each case. The scale was
set such that a score of 100 points was awarded to a perfect tumor segmentation
with 100% volume overlap with the expert segmentation. Table 1 shows the eval-
uation results of the testing data. The algorithm provided reasonable results of
most of the lesions. In some cases like IMG08 L1 and IMG09 L1 in Table 1, the
algorithm may fail. It is probably because the region will leak when the bound-
ary is very blur. Therefore, the leakage would be constrained if we can delineate
the tumor region in some way. Another possible reason is the algorithm highly
depends on the choice of seed points and thresholds. However, it is not easy to
choose robust values. The values are usually chosen by several experiment and
experience.

The program was run on a MacPro with two 2GHz Dual-Core Intel Xeon
and 4GB 667MHz DDR2 memory. The running time was about ten to thirty
minutes for all the lesions. For some small lesions, it was pretty fast (less than
10 minutes). However, it took a longer time to segment the extremely large
tumor like IMG07 L1 and IMG08 L1 in the testing data. It should be noted
that we made no attempt to tune the algorithm’s parameters to reduce the
execution time. Instead, as these parameters are only set once in the beginning
of the 3D segmentation and no manual intervention is added during automatic
growing (to inspect the performance), the primary concern is the convergence of
growing. Thus there could be a great potential to increase execution speed.



(a) (b) (c) (d)

Fig. 3. Segmentation references (top row) and results (bottom row) of training data
set. (a) Lesion 2 from Patient 1. (b) Lesion 3 from Patient 2. (c) Lesion 1 from Patient
3. (d) Lesion 4 from Patient 4.

4 Discussion and Conclusion

In this work, we have presented a semi-automatic algorithm to segment liver
tumors from computed tomography (CT) images. To cope with the variance
of tumors, we model liver tumor using a bag of Gaussians, and employ a 3D
seeded region growing method. The bag of Gaussians are initialized at manually
selected seeds and updated during growing process iteratively. Two criteria are
fulfilled for the growing: one is the Bayesian decision rule, and the other is a
model matching measure. Finally, morphological operations are performed to
refine the results.

By exploring the segmentation and evaluation results, the pros and cons of
the proposed algorithm can be concluded as follows. First, as shown in Figure 3,
the algorithm provides reasonable results for most of the lesions, especially when
the intensity difference between tumor and normal liver is large. Second, the
region will grow in 3D. Thus, the user only need to pick seed points once, and do
not need to initialize the algorithm for every slice. It involves very little manual
(and simple) operation in initial seed selection. There is no other constraint or
further manual work during the growing. Also the continuity of the segmented
object in 3D is better than that of 2D-based segmentation algorithms (Figure
4).

On the other hand, the region growing process is not easy to control in
3D when the boundaries are unclear. It has a very high probability to leak,
and the leakage will propagate to adjacent slices. The proposed algorithms will
detect the top and bottom slices of the tumor automatically. However, in some



Table 1. Results of the comparison metrics and scores for all the testing data. S: score.
T: total score.

Overlap Volume Ave. Surf RMS Surf. Max. Surf.
Error Difference Dist. Dist. Dist.

Tumor (%) S (%) S (mm) S (mm) S (mm) S T

IMG05 L1 42.47 67 32.60 66 3.27 17 4.45 38 14.78 63 50

IMG05 L2 37.21 71 13.68 86 1.35 66 1.77 75 4.86 88 77

IMG05 L3 47.21 64 26.12 73 2.05 48 2.76 61 9.44 76 64

IMG06 L1 59.58 54 118.54 0 2.55 36 3.28 54 8.71 78 44

IMG06 L2 67.56 48 2.24 98 2.04 49 2.43 66 6.70 83 69

IMG07 L1 24.70 81 11.72 88 3.02 24 4.31 40 25.71 36 54

IMG07 L2 35.95 72 53.70 44 2.18 45 2.84 60 13.65 66 58

IMG08 L1 28.39 78 29.32 70 6.55 0 11.99 0 60.51 0 30

IMG09 L1 57.20 56 133.39 0 3.41 14 3.95 45 12.75 68 36

IMG10 L1 20.75 84 8.81 91 1.20 70 1.58 78 12.18 70 78

Average 42.10 68 43.01 62 2.76 37 3.94 52 16.93 63 56

(a) (b)

Fig. 4. Snapshots of 3D segmented tumors after smoothing. (a) Lesion 2 from Patient
1. (b) Lesion 4 from Patient 4.

complicated cases, the algorithm cannot handle very well, such that there will
be more segmentation errors in top and bottom slices.

The main problem with the proposed algorithm is the leakage problem. In
order to control the region growing more effectively, shape constraints and prior
knowledge may be helpful. However, how to embed such constraints into the
region growing in 3D dynamically will become another difficult issue.
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