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Abstract

This paper describes an interactive approach to the identification of coronary arteries in 3D angiography
images. The approach is based on a novel multiple hypothesistracking methodology which is comple-
mented with a standard minimal path search, and it allows fora complete segmentation with little manual
labor. When evaluated using the 3D CT angiography data supplied with the MICCAI’08 workshop3D
Segmentation in the Clinic: A Grand Challenge II, 98% of the target coronary arteries could be seg-
mented in about 5 minutes per data set with the same spatial accuracy achieved in manual segmentations
by human experts.
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1 Introduction

The methodology described in this paper was developed for the MICCAI’08 workshop3D Segmentation
in the Clinic: A Grand Challenge II - Coronary Artery Tracking [4]. This workshop has the form of a
competition where the aim is to locate the centerlines of thecoronary arteries as accurately as possible in
3D CT angiography image volumes. Our goal is to provide an implementation with which it is possible
to segment the complete coronary artery vessel system, regardless of data quality or artifacts. To this end,
an accurate segmentation approach over which the human operator has good interactive control is required.
Three different segmentation methods are combined in our implementation:

• Multiple hypothesis vessel tracking

• Minimal paths

• Manual setting of points

The multiple hypothesis vessel tracking [3, 2] is the working horse that identifies the major part (about 90%)
of the coronary centerlines with high spatial precision. This recent tracking method is described in Section
3.2. Where the multiple hypothesis tracking terminates prematurely, the user can complete the coronary
centerlines by connecting points using a standard minimal paths method based on Fast Marching [1], as
described in Section3.3. As a final resort, should the first two methods fail, can the user manually place
points along the vessel centerline. A feature of our implementation is that the coronary centerlines at all
times are represented by points in a world coordinate system. That is, at no point do we use a voxelized
segmentation mask, as this means a quantization and loss of spatial accuracy, as well as a larger memory
footprint.

2 Data

The competition data consist of 8 CT angiography data sets for which manually drawn centerlines are
provided and 16 data sets for which only the start (S) and end (E) points of 4 coronary arteries per data
set are provided. See [4] for more information on the data. The 8 training data sets were used to tune
the parameters of the segmentation algorithms described below. All parameters were then kept fixed when
segmenting the 16 competition data sets.

3 Methods

3.1 Image preprocessing

The original 3D CT volumes have an in-plane size of 512×512 voxels. However, an inspection of the image
spectra reveals that there is no power in the frequencies above π/2, meaning that the intrinsic resolution
of the images is only 256×256, see Fig.1a. Therefore, as a first step, the input 3D image volume is
downsampled by a factor 2, resulting in faster processing and less memory usage without a corresponding
loss in accuracy.

In a second preprocessing step, the images are prepared for segmentation by setting the voxel intensity for
lung tissue and vessel calcifications equal to the intensitymyocardial tissuetmyo. Expressed mathematically,
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3.2 Multiple hypothesis tracking 3

Figure 1: a) Log-spectrum of a 512×512 image slice. The spectral power can be found in frequencies
less thanπ/2, as indicated by the yellow circle. Hence, one can downsample by a factor 2 without loosing
information. b) The two data viewers used in the segmentation. The left viewer shows axial slices. In
this viewer, seed points for the multiple hypothesis tracking are set. The right viewer shows the segmented
centerline points. In this viewer, points to be connected with a minimal path algorithm are chosen. The
green points illustrates such a path. The data set shown is the competition data set 12.

a preprocessed imageĨ(x) is produced from the original imageI(x), wherex ∈ R
3 is a spatial position, as

follows:

Ĩ(x) =











tmyo if I(x) < tmyo (raise lung tissue),

I(x) if tmyo≤ I(x) ≤ tcalc,

tmyo if I(x) > tcalc (remove calcifications).

(1)

The rationale for raising the intensity of the lung tissue tothe level of the myocardial tissue is to adapt the
image to the vessel template model employed for tracking vessels (see Section3.2) and thereby improve the
segmentation of the coronary arteries running along the heart-lung interface. Vessel calcifications are not
part of the vessel lumen and they are for this reason also eliminated. The thresholds were fixed totmyo= 950
andtcalc = 1700, expressed in the units of the raw data.

3.2 Multiple hypothesis tracking

A tracking approach to vessel segmentation iteratively places model segments in front of each other so
as to form a chain of segments that represents the vessel. In general, a tracking algorithm proceeds by
first predicting a new vessel segment from the current position and then updating the model parameters
(position, radius, orientation, etc.) based on the observed image data at the new position. Multiple hypothesis
tracking (MHT) for vessel segmentation was first presented in [3] and a more detailed description can be
found in [2]. The MHT provides a computationally efficient alternativeto particle filters for evaluating
multiple hypothetical vessel trajectories. From a given point on the vessel centerline, a search tree is built by
recursively evaluating several possible vessel continuations, see Fig.2a for an illustration. Similar strategies
are used in game theory and dynamic programming. For the coronary artery segmentation, we search 4
steps forward and the search tree will therefore have a depthof 4. Each leaf in the search tree represents a
trajectory consisting of 4 steps, where the length of each step is set to 1.5 times the local vessel radius (in
millimeters). Once the search tree has been built, each hypothetical path is evaluated by assessing how well
each model segment along the path fits the image data. A step along the most promising path, i.e., the path
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Figure 2: a) Illustration of the multiple hypothesis tracking principle. From the start point (large blue
point), several hypothetical paths forward are evaluated before deciding on the next step. The search depth
is here 6. b) A slice through the 3D vessel template functionT(x;x0, r, v̂) with x0 = 0, r = 2.2 andv̂ =
[0.98,−0.20,0.0]T .

with the highest score, is then taken and the search tree is rebuilt from the new position. The advantage of
this approach is that the decision of where to take the next tracking step is based on the goodness-of-fit of
many steps forward as opposed to just a single step ahead as ina conventional tracking method. This enables
the MHT to traverse difficult passages where one or two model segments may fit the data poorly due to low
contrast or artifacts.

The MHT approach can be used together with many different vessel models. In this work we use a tube
segment model in form of a templateT(x;x0, r, v̂) : R

3 → [0,1] that models a small ideal image neighborhood
containing a vessel. Here,x ∈ R

3 is a spatial coordinate,x0 ∈ R
3 the center point of the template lying on

the vessel centerline,r ∈ R the local vessel radius and̂v ∈ R
3 a normalized vector pointing out the vessel

direction. A template example is shown in Fig.2b and more information on its construction can be found
in [3, 2]. Important is thatT(x;x0, r, v̂) has a closed-form expression and that the partial derivatives with
respect to the parameters can be derived analytically. Thismeans that a non-linear least squares approach can
be efficiently used to fit the template to the image data, whereby accurate estimates of the local radius, the
local vessel direction and a point on the vessel centerline are obtained. The Levenberg-Marquardt algorithm
is used for this purpose to adapt the template radius, direction and center point to the image data in a
least square error sense. Finally, to reconnect with the preprocessing step, the template model assumes a
uniform image intensity around a brighter vessel. Therefore, to conform with this assumption at the heart-
lung interface, the lung tissue image intensity is raised tothe level of the myocardial tissue in the image
preprocessing step.

To start the tracking, initial values of the position (x0), radius (r) and direction (̂v) parameters are required.
In our implementation, the user provides the start pointx0. The Hessian matrix is then analyzed at this point
to find the orientation̂v of the local image neighborhood. The tracking is performed bidirectionally alongv̂
and -̂v. The initial radius is set to 0.75 mm. A first fitting step usingthe Levenberg-Marquardt optimization
will refine these initial guesses and the tracking will then commence. Hence, all the user has to do is to give
a spatial start point, the tracking then finishes in a few (1-3) seconds. Finally, while the MHT algorithm has
the ability to detect vessel bifurcations, this option was turned off as no significant reduction in segmentation
time was achieved.
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3.3 Minimal paths

A minimal path approach is employed to complement the segmentation provided by the MHT algorithm
described above. Typically, a minimal path is here used to bridge gaps the MHT algorithm is unable pass due
to low vessel contrast or interfering neighboring structures. A minimal path is the shortest path between two
points according to a given metric. The key problem is to specify a metric so that the minimal path coincides
with the vessel centerline. Once the metric has been specified, the standard methods for finding the minimal
path are to apply either Dijkstra’s shortest path search, where the metric is given as weights between the
graph vertices, or to apply a Fast Marching originating fromthe start point and then perform a back-tracking
from the end point to find the optimal path [1]. The metric is in this latter case given as a speed image. We
adopt the Fast Marching approach and use the implementationin the Insight Segmentation and Registration
Toolkit (ITK). The speed imageS(I) → [0,1] is constructed as a combination of the original imageI (the
spatial indexx ∈ R

3 is not written out here) and the Sato et al. [5] vesselness measureV(I) as implemented
in ITK. To speed up the processing, the vesselness measure isonly calculated for a single scale and for a
box around the user-given start and end points. The correct scale of the vesselness measure can be inferred
as the MHT algorithm provides us with the radii of the points we want to connect. The speed image is then
calculated asS(I) = 0.25σ1(I)+0.75σ2 (V(I)), whereσi(·) : R → [0,1] denotes the itkSigmoidImageFilter
sigmoid function. The two parameters inσ1(·) and σ2(·) can also be inferred automatically as we have
samples lying on the vessel centerline in the vicinity of thestart and end points of the minimal path. Hence,
the user needs only to mark two points, the remaining parameters are then set up automatically and the
minimal path is generally found within 1-2 seconds. An example path is shown in Fig.1b.

4 Implementation

4.1 GUI & Interaction

All methods were implemented in C++ and integrated as modules in the free software package MeVisLab
(http://www.mevislab.de). MeVisLab is a graphical programming environment for prototyping biomed-
ical imaging applications. It embodies, for example, the ITK and the Visualization Toolkit (VTK), as well
as many other modules for medical image analysis, interaction and visualization. The modules required for
the coronary centerline identification were gathered undera graphical user interface which facilitates the
required user interactivity. Two data viewers are used for the segmentation, one showing axial image slices
and one 3D viewer displaying segmented points on the artery centerlines, see Fig.1b. In the image viewer,
the user can add and delete points, for example to be used as seeds for the MHT. In the 3D viewer, all points
are shown, including the pre-defined end (E) points delivered with the competition data. In this viewer, the
user can choose points to connect with the minimal path algorithm.

4.2 Segmentation approach

The segmentation of the coronary arteries was in general carried out as follows. First, the MHT was executed
with one seed point in each of the two main coronary arteries exiting from the aorta, i.e., in the right coronary
artery (RCA) and in the left main stem (LM) artery. This typically results in a nearly complete segmentation
of the RCA and of one of the main left coronary arteries (no attempt to detect bifurcations were made). Next,
tracking seed points were placed in the remaining target arteries. If the tracking terminates prematurely, it
can be reinitialized by placing further seed points. When the tracking stage is completed, about 90% of
the coronary arteries are generally segmented, though there might be gaps in the segmentation where the
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Figure 3: Segmented centerline points for the competition data sets 8, 16 and 22.

vessel contrast is low. To finalize the segmentation, the user selects points in the 3D viewer in Fig.1b to
be connected with the minimal paths algorithm. As our goal isa complete segmentation, a minimal path
search was frequently necessary to find the last distal vessel parts to the pre-defined end points. Should the
minimal path be incorrect, i.e., not run along the vessel centerline but along some neighboring structure,
a last resort is to manually introduce intermediate points on the vessel centerline between which minimal
paths are sought.

The final segmentation result is a collection of points, mostof which lie on the centerlines of the target
coronary arteries. For the competition purpose, the coordinates along the centerline of each target coronary
artery must be extracted. To this end, the segmented points are converted into an undirected graph where
each point becomes a vertex and where the vertexes are connected by edges with weights equal to the
squared Euclidian distance between the corresponding points. The centerlines are found by applying a
Dijkstra shortest path search between the pre-defined start(S) and end (E) points in this graph.

5 Results

The 16 competition data sets were segmented using the procedure described above. Results for three data
sets are shown in Fig.3. The number of user-set seed points for the MHT, the number ofminimal path
connections and the approximate time required for a complete segmentation were recorded for each data
set, see Table1(b). The segmentation time includes the entire process, i.e., from loading data to saving the
competition results. An average data set is segmented in 5-6minutes and requires 6 MHT seed points and
4 minimal path connections. The computational time for the MHT and the minimal paths constitute only
a small part of the total segmentation time; most of the time is spent on visual screening and interaction to
get the centerline identification correct at one or a few low contrast passages. For example, in data set 22
the MHT finds all target coronary arteries directly and the entire segmentation can be completed in less than
2 minutes. By contrast, data set 8 contains a few difficult passages which required more interaction. The
problematic passages were almost exclusively areas of low vessel contrast; calcifications, plaques or stents
did in general not cause any problems for the MHT. Again, it should be stressed that our primary goal when
segmenting the competition data sets was to maximize the competition scores and not to optimize interaction
or speed; a segmentation of clinically relevant parts can beproduced with less interactivity and in shorter
time.

Accuracy and overlap scores for the segmented vessels were calculated as described in [4]. There are 3
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Table 1: User interaction & Average overlap per data set
(a) Average overlap per data set

Dataset OV OF OT Avg.
nr. % score rank % score rank % score rank rank
8 92.5 74.6 – 78.2 71.5 – 92.7 71.3 – –
9 100.0 100.0 – 100.0 100.0 – 100.0 100.0 – –
10 99.4 96.6 – 96.5 86.8 – 99.4 87.2 – –
11 96.0 63.9 – 53.2 52.4 – 96.0 64.5 – –
12 99.2 71.6 – 68.4 48.0 – 99.5 62.3 – –
13 98.6 69.3 – 64.7 47.5 – 98.7 67.9 – –
14 99.9 95.7 – 83.9 82.6 – 99.9 87.5 – –
15 99.0 87.0 – 95.1 85.1 – 99.0 87.0 – –
16 99.3 83.3 – 84.0 78.6 – 99.3 87.2 – –
17 89.8 82.9 – 64.5 57.8 – 89.7 71.6 – –
18 98.8 76.0 – 79.6 65.2 – 98.8 74.4 – –
19 100.0 100.0 – 100.0 100.0 – 100.0 100.0 – –
20 99.4 92.6 – 93.6 73.8 – 99.5 85.5 – –
21 100.0 97.8 – 99.9 99.5 – 100.0 100.0 – –
22 99.9 95.0 – 99.8 87.4 – 100.0 100.0 – –
23 100.0 100.0 – 100.0 100.0 – 100.0 100.0 – –

Avg. 98.2 86.6 – 85.1 77.3 – 98.3 84.1 – –

(b) User interaction

# MHT # Minimal Time
seeds paths (min)

7 10 10
6 7 5
8 3 6
7 4 8
4 3 4
9 4 5
6 2 4
5 2 4
5 3 4
8 4 6
6 4 8
6 1 6
5 5 6
8 4 6
4 0 2
5 5 6

6.2 3.8 5:38

Table 2: Average accuracy per data set
Dataset AD AI AT Avg.

nr. mm score rank mm score rank mm score rank rank
8 0.39 46.9 – 0.31 47.7 – 0.39 47.9 – –
9 0.16 51.6 – 0.16 51.6 – 0.16 52.2 – –
10 0.23 43.5 – 0.23 43.7 – 0.23 43.5 – –
11 0.33 45.2 – 0.28 45.8 – 0.33 45.2 – –
12 0.24 47.4 – 0.24 47.7 – 0.24 48.5 – –
13 0.23 46.4 – 0.22 47.0 – 0.23 47.2 – –
14 0.24 50.6 – 0.24 50.7 – 0.24 50.4 – –
15 0.19 51.3 – 0.18 51.8 – 0.19 52.1 – –
16 0.23 46.7 – 0.22 46.9 – 0.25 45.3 – –
17 0.75 52.6 – 0.30 53.0 – 0.76 52.6 – –
18 0.20 51.5 – 0.18 52.0 – 0.20 51.5 – –
19 0.25 50.8 – 0.25 50.8 – 0.25 50.8 – –
20 0.30 47.7 – 0.29 47.8 – 0.30 47.7 – –
21 0.17 49.1 – 0.17 49.1 – 0.16 49.3 – –
22 0.21 47.1 – 0.21 47.2 – 0.21 47.3 – –
23 0.23 45.5 – 0.23 45.5 – 0.23 45.5 – –

Avg. 0.27 48.4 – 0.23 48.6 – 0.27 48.6 – –

Table 3: Summary
Measure % / mm score rank

min. max. avg. min. max. avg. min. max. avg.
OV 61.3% 100.0% 98.2% 47.4 100.0 86.6 – – –
OF 7.7% 100.0% 85.1% 10.4 100.0 77.3 – – –
OT 61.0% 100.0% 98.3% 35.9 100.0 84.1 – – –
AD 0.10 mm 2.12 mm 0.27 mm 37.7 61.9 48.4 – – –
AI 0.10 mm 0.53 mm 0.23 mm 38.1 62.9 48.6 – – –
AT 0.10 mm 2.13 mm 0.27 mm 32.7 62.0 48.6 – – –

Total – – –
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overlap scores:Overlap(OV), Overlap until first error(OF) andOverlap with> 1.5 mm vessel(OT). These
scores measure the overlap between the segmented centerlines and a ground truth centerline derived from
manual segmentations by human experts. The scores are scaled so that 0 indicates complete failure, 50
corresponds to a result within the human inter-observer variability and 100 is a perfect result. The overlap
scores for our algorithm and for each of the 16 data sets are presented in Table1(a). A first observation is
the nearly complete segmentation of the target vessels, more than 98% are on average segmented. This is
also reflected in the high overlap scores, with an average of 86.6 for the OV score, i.e., significantly better
than the human inter-observer variability.

The accuracy scores evaluate the distance to the ground truth centerline. The scores are:Average distance
(AD), Average distance inside vessel(AI) andAverage distance to the clinical relevant part of a vessel(AT).
The distances and the scores are shown in Table2. The average distance to the ground truth centerline is
0.27 mm which is about half of the (intrinsic) voxel size. This is also the accuracy the human experts achieve
(average AD score of about 48.5 compared to the human score of50). A summary of all scores is presented
in Table3.

6 Conclusions

Our goal in this work is to produce a complete segmentation ofthe target coronary vessels regardless of
data quality or artifacts, and thereby achieve a good competition score. This ambition is reflected in the
high overlap scores, but also in the interaction (clicks andconnections) and time that were spent to get
accurate segmentations also at the very distal parts of the vessels. The distal parts are of lesser importance
from a clinical perspective and it is possible to achieve clinically relevant results with less interaction and
in less time than in the current contest setting. In terms of centerline accuracy, human expert performance
is achieved with our approach. This can largely be attributed to the precision of the multiple hypothesis
tracking algorithm which segments the major part of the vessels. One can also remark that the high spatial
accuracy was obtained although the data have been subsampled by a factor 2, confirming the observation
that the intrinsic resolution is not as high as indicated by the original 5123 image volumes.
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