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Abstract

This paper describes an interactive approach to the ideattdin of coronary arteries in 3D angiography
images. The approach is based on a novel multiple hypottrasisng methodology which is comple-
mented with a standard minimal path search, and it allowa tmmplete segmentation with little manual
labor. When evaluated using the 3D CT angiography data me¢pith the MICCAI'08 workshoBD
Segmentation in the Clinic: A Grand Challenge 98% of the target coronary arteries could be seg-
mented in about 5 minutes per data set with the same spatiadaary achieved in manual segmentations
by human experts.
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1 Introduction

The methodology described in this paper was developed &MICCAI'08 workshop3D Segmentation

in the Clinic: A Grand Challenge Il - Coronary Artery Trackjrf4]. This workshop has the form of a
competition where the aim is to locate the centerlines ofttivenary arteries as accurately as possible in
3D CT angiography image volumes. Our goal is to provide anémgntation with which it is possible
to segment the complete coronary artery vessel systenrdiegs of data quality or artifacts. To this end,
an accurate segmentation approach over which the humaatopbas good interactive control is required.
Three different segmentation methods are combined in opleimentation:

e Multiple hypothesis vessel tracking
e Minimal paths
e Manual setting of points

The multiple hypothesis vessel trackir) 2] is the working horse that identifies the major part (abo¥p0
of the coronary centerlines with high spatial precisionisTkcent tracking method is described in Section
3.2 Where the multiple hypothesis tracking terminates premedy, the user can complete the coronary
centerlines by connecting points using a standard miniratiigomethod based on Fast Marchidd ps
described in Sectio8.3. As a final resort, should the first two methods fail, can ther usanually place
points along the vessel centerline. A feature of our implaat@on is that the coronary centerlines at all
times are represented by points in a world coordinate sysfEmat is, at no point do we use a voxelized
segmentation mask, as this means a quantization and logatidisaccuracy, as well as a larger memory
footprint.

2 Data

The competition data consist of 8 CT angiography data setsvfaich manually drawn centerlines are
provided and 16 data sets for which only the start (S) and Ejgdints of 4 coronary arteries per data
set are provided. Sed][for more information on the data. The 8 training data setsewesed to tune
the parameters of the segmentation algorithms describded/ball parameters were then kept fixed when
segmenting the 16 competition data sets.

3 Methods

3.1 Image preprocessing

The original 3D CT volumes have an in-plane size of 5522 voxels. However, an inspection of the image
spectra reveals that there is no power in the frequenciegeal(®, meaning that the intrinsic resolution
of the images is only 256256, see Figla. Therefore, as a first step, the input 3D image volume is
downsampled by a factor 2, resulting in faster processimhl@ss memory usage without a corresponding
loss in accuracy.

In a second preprocessing step, the images are preparegjfoestation by setting the voxel intensity for
lung tissue and vessel calcifications equal to the intemsytycardial tissuényo Expressed mathematically,
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Figure 1: a) Log-spectrum of a 512512 image slice. The spectral power can be found in freqaenci
less tharrt/2, as indicated by the yellow circle. Hence, one can downsaimpa factor 2 without loosing
information. b) The two data viewers used in the segmentation. The left visvews axial slices. In
this viewer, seed points for the multiple hypothesis tragkare set. The right viewer shows the segmented
centerline points. In this viewer, points to be connectethwsi minimal path algorithm are chosen. The
green points illustrates such a path. The data set showa othpetition data set 12.

a preprocessed imadéx) is produced from the original imadéx), wherex € R® is a spatial position, as
follows:
tmyo  if 1(X) < tmyo (raise lung tissue),

|~(X) =q1(x) fif tmyo < I(X) <tcalc, (1)
tmyo if 1(X) > tcaic (remove calcifications).

The rationale for raising the intensity of the lung tissué¢hi® level of the myocardial tissue is to adapt the
image to the vessel template model employed for trackingelegsee SectioB.2) and thereby improve the
segmentation of the coronary arteries running along thet@zg interface. Vessel calcifications are not
part of the vessel lumen and they are for this reason alsonglted. The thresholds were fixedt{go,= 950
andtggc = 1700, expressed in the units of the raw data.

3.2 Multiple hypothesis tracking

A tracking approach to vessel segmentation iterativelggdamodel segments in front of each other so
as to form a chain of segments that represents the vesselenkral, a tracking algorithm proceeds by
first predicting a new vessel segment from the current mosiéind then updating the model parameters
(position, radius, orientation, etc.) based on the obskimage data at the new position. Multiple hypothesis
tracking (MHT) for vessel segmentation was first presentef8]iand a more detailed description can be
found in [2]. The MHT provides a computationally efficient alternatitee particle filters for evaluating
multiple hypothetical vessel trajectories. From a giveimpon the vessel centerline, a search tree is built by
recursively evaluating several possible vessel contionst see Fig2a for an illustration. Similar strategies
are used in game theory and dynamic programming. For thenapraartery segmentation, we search 4
steps forward and the search tree will therefore have a ddpth Each leaf in the search tree represents a
trajectory consisting of 4 steps, where the length of eagp ist set to 5 times the local vessel radius (in
millimeters). Once the search tree has been built, eachthgfical path is evaluated by assessing how well
each model segment along the path fits the image data. A steg tile most promising path, i.e., the path
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Figure 2: a) lllustration of the multiple hypothesis tracking prin@pl From the start point (large blue
point), several hypothetical paths forward are evaluatfdrb deciding on the next step. The search depth
is here 6.b) A slice through the 3D vessel template functidfx;xo,r,V) with xo =0, r = 2.2 andV =
[0.98 —0.20,0.0].

with the highest score, is then taken and the search trebudtrerom the new position. The advantage of

this approach is that the decision of where to take the negking step is based on the goodness-of-fit of
many steps forward as opposed to just a single step ahead asimentional tracking method. This enables
the MHT to traverse difficult passages where one or two maelghents may fit the data poorly due to low

contrast or artifacts.

The MHT approach can be used together with many differergelenodels. In this work we use a tube
segment model in form of a templaféx; xo,r,7) : R% — [0, 1] that models a small ideal image neighborhood
containing a vessel. Here,c R3 is a spatial coordinateyy € R the center point of the template lying on
the vessel centerling,c R the local vessel radius aride R® a normalized vector pointing out the vessel
direction. A template example is shown in Filp and more information on its construction can be found
in [3, 2]. Important is thafT (x;Xo,r,V) has a closed-form expression and that the partial derestivith
respect to the parameters can be derived analytically. riiéans that a non-linear least squares approach can
be efficiently used to fit the template to the image data, wheaecurate estimates of the local radius, the
local vessel direction and a point on the vessel centerli@elatained. The Levenberg-Marquardt algorithm
is used for this purpose to adapt the template radius, direeind center point to the image data in a
least square error sense. Finally, to reconnect with thprpcessing step, the template model assumes a
uniform image intensity around a brighter vessel. Theeefty conform with this assumption at the heart-
lung interface, the lung tissue image intensity is raisethelevel of the myocardial tissue in the image
preprocessing step.

To start the tracking, initial values of the positiot), radius () and direction {) parameters are required.
In our implementation, the user provides the start poinfThe Hessian matrix is then analyzed at this point
to find the orientatiorv of the local image neighborhood. The tracking is performieédxctionally alongv

and ¥. The initial radius is set to 0.75 mm. A first fitting step usthg Levenberg-Marquardt optimization
will refine these initial guesses and the tracking will themeence. Hence, all the user has to do is to give
a spatial start point, the tracking then finishes in a few)($e®onds. Finally, while the MHT algorithm has
the ability to detect vessel bifurcations, this option wased off as no significant reduction in segmentation
time was achieved.
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3.3 Minimal paths

A minimal path approach is employed to complement the setatien provided by the MHT algorithm
described above. Typically, a minimal path is here useditigbrgaps the MHT algorithm is unable pass due
to low vessel contrast or interfering neighboring struesurA minimal path is the shortest path between two
points according to a given metric. The key problem is to peametric so that the minimal path coincides
with the vessel centerline. Once the metric has been spkdifie standard methods for finding the minimal
path are to apply either Dijkstra’s shortest path searcherevthe metric is given as weights between the
graph vertices, or to apply a Fast Marching originating fitbestart point and then perform a back-tracking
from the end point to find the optimal path]] The metric is in this latter case given as a speed image. We
adopt the Fast Marching approach and use the implemeniattbe Insight Segmentation and Registration
Toolkit (ITK). The speed imag&(l) — [0,1] is constructed as a combination of the original imadte
spatial indexx € R3 is not written out here) and the Sato et &} Jesselness measwél ) as implemented

in ITK. To speed up the processing, the vesselness measondyisalculated for a single scale and for a
box around the user-given start and end points. The corcatd sf the vesselness measure can be inferred
as the MHT algorithm provides us with the radii of the poineswant to connect. The speed image is then
calculated a§(l) = 0.2501 (1) +0.7502 (V (1)), whereg;j(-) : R — [0, 1] denotes the itkSigmoidimageFilter
sigmoid function. The two parameters an(-) and o»(-) can also be inferred automatically as we have
samples lying on the vessel centerline in the vicinity ofstet and end points of the minimal path. Hence,
the user needs only to mark two points, the remaining paemsetre then set up automatically and the
minimal path is generally found within 1-2 seconds. An exkngath is shown in Figlb.

4 Implementation

4.1 GUI & Interaction

All methods were implemented in C++ and integrated as madul¢he free software package MeVisLab
(http: // www. mevi sl ab. de). MeVisLab is a graphical programming environment for ptgping biomed-
ical imaging applications. It embodies, for example, th& Bhd the Visualization Toolkit (VTK), as well
as many other modules for medical image analysis, interaetind visualization. The modules required for
the coronary centerline identification were gathered urdgraphical user interface which facilitates the
required user interactivity. Two data viewers are usedlersegmentation, one showing axial image slices
and one 3D viewer displaying segmented points on the artamtedines, see Fidb. In the image viewer,
the user can add and delete points, for example to be useddsfee the MHT. In the 3D viewer, all points
are shown, including the pre-defined end (E) points deld/evith the competition data. In this viewer, the
user can choose points to connect with the minimal path ifaor

4.2 Segmentation approach

The segmentation of the coronary arteries was in genendtdanut as follows. First, the MHT was executed
with one seed point in each of the two main coronary arte#sg from the aorta, i.e., in the right coronary
artery (RCA) and in the left main stem (LM) artery. This tyalig results in a nearly complete segmentation
of the RCA and of one of the main left coronary arteries (nerait to detect bifurcations were made). Next,
tracking seed points were placed in the remaining targetiagt If the tracking terminates prematurely, it
can be reinitialized by placing further seed points. Whentthcking stage is completed, about 90% of
the coronary arteries are generally segmented, thoughk thaght be gaps in the segmentation where the
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Figure 3: Segmented centerline points for the competiteta dets 8, 16 and 22.

vessel contrast is low. To finalize the segmentation, the sslects points in the 3D viewer in Fidgb to

be connected with the minimal paths algorithm. As our goa ®mplete segmentation, a minimal path
search was frequently necessary to find the last distal Meags to the pre-defined end points. Should the
minimal path be incorrect, i.e., not run along the vessetaréine but along some neighboring structure,
a last resort is to manually introduce intermediate poimishe vessel centerline between which minimal
paths are sought.

The final segmentation result is a collection of points, nafsivhich lie on the centerlines of the target
coronary arteries. For the competition purpose, the coatds along the centerline of each target coronary
artery must be extracted. To this end, the segmented poimtsoaverted into an undirected graph where
each point becomes a vertex and where the vertexes are tedrgc edges with weights equal to the
squared Euclidian distance between the correspondingspoifhe centerlines are found by applying a
Dijkstra shortest path search between the pre-defined(Seaind end (E) points in this graph.

5 Results

The 16 competition data sets were segmented using the precddscribed above. Results for three data
sets are shown in Fi®. The number of user-set seed points for the MHT, the numbeninimal path
connections and the approximate time required for a com@etymentation were recorded for each data
set, see Tablé(b). The segmentation time includes the entire process, iaen foading data to saving the
competition results. An average data set is segmented imbBygtes and requires 6 MHT seed points and
4 minimal path connections. The computational time for theTvand the minimal paths constitute only
a small part of the total segmentation time; most of the tisngpient on visual screening and interaction to
get the centerline identification correct at one or a few lonttast passages. For example, in data set 22
the MHT finds all target coronary arteries directly and thirersegmentation can be completed in less than
2 minutes. By contrast, data set 8 contains a few difficuls@gss which required more interaction. The
problematic passages were almost exclusively areas of é@sel contrast; calcifications, plaques or stents
did in general not cause any problems for the MHT. Again, ¢ttt be stressed that our primary goal when
segmenting the competition data sets was to maximize theetition scores and not to optimize interaction
or speed; a segmentation of clinically relevant parts caprbduced with less interactivity and in shorter
time.

Accuracy and overlap scores for the segmented vessels wkendated as described id][ There are 3
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Table 1: User interaction & Average overlap per data set
(a) Average overlap per data set

(b) User interaction

Dataset oV OF oT Avg. #MHT  #Minimal Time
nr. % score rank| % score rank| % score  rank| rank seeds paths (min)
8 92.5 74.6 - 78.2 71.5 - 92.7 71.3 - — 7 10 10
9 100.0 100.0 — | 100.0 100.0 — | 100.0 100.0 - - 6 7 5
10 99.4 96.6 - 96.5 86.8 - 99.4 87.2 - - 8 3 6
11 96.0 63.9 - 53.2 52.4 - 96.0 64.5 - - 7 4 8
12 99.2 71.6 - 68.4 48.0 - 99.5 62.3 - - 4 3 4
13 98.6 69.3 - 64.7 47.5 - 98.7 67.9 - - 9 4 5
14 99.9 95.7 - 83.9 82.6 - 99.9 87.5 - - 6 2 4
15 99.0 87.0 - 95.1 85.1 - 99.0 87.0 - - 5 2 4
16 99.3 83.3 - 84.0 78.6 - 99.3 87.2 - - 5 3 4
17 89.8 82.9 - 64.5 57.8 - 89.7 71.6 - - 8 4 6
18 98.8 76.0 - 79.6 65.2 - 98.8 74.4 - - 6 4 8
19 100.0 100.0 — | 100.0 100.0 — | 100.0 100.0 - - 6 1 6
20 99.4 92.6 - 93.6 73.8 - 99.5 85.5 - - 5 5 6
21 100.0 97.8 - 99.9 99.5 - 100.0 100.0 - - 8 4 6
22 99.9 95.0 - 99.8 87.4 - | 100.0 100.0 - - 4 0 2
23 100.0 100.0 — | 100.0 100.0 — | 100.0 100.0 - - 5 5 6

Avg. 98.2 86.6 - 85.1 77.3 - 98.3 84.1 - - 6.2 3.8 5:38
Table 2: Average accuracy per data set
Dataset AD Al AT Avg.
nr. mm  score rank| mm score rank| mm score rank| rank
8 0.39 46.9 - |1 031 47.7 - | 0.39 47.9 - -
9 0.16 516 - | 016 516 - | 016 52.2 - -
10 0.23 435 - | 0.23 43.7 - | 0.23 435 - -
11 0.33 452 — | 0.28 458 - | 0.33 452 - -
12 0.24 474 - | 0.24 477 - | 0.24 48.5 - -
13 0.23 464 - | 0.22 470 - | 023 47.2 - -
14 0.24 50.6 - | 024 50.7 - | 024 504 - -
15 0.19 51.3 - | 0.18 51.8 - | 0.19 52.1 - -
16 0.23 46.7 - | 0.22 469 - | 025 453 - -
17 0.75 52.6 - | 0.30 53.0 - | 0.76 52.6 - -
18 0.20 515 - | 018 52.0 - | 020 515 - -
19 0.25 50.8 - | 0.25 50.8 - | 0.25 50.8 - -
20 0.30 47.7 - | 0.29 4738 - | 0.30 47.7 - -
21 0.17 49.1 - | 0.17 49.1 - | 0.16 49.3 - -
22 0.21 471 - | 0.21 47.2 - | 0.21 47.3 - -
23 0.23 455 — | 023 455 - | 023 455 - -
Avg. 0.27 484 - | 0.23 486 — | 0.27 48.6 - -
Table 3: Summary
Measure % / mm score rank
min. max. avg. min.  max. avg.| min max. avg.
oV 61.3% 100.0% 98.2% | 47.4 100.0 86.6|] - - -
OF 7.7% 100.0% 85.1% | 10.4 1000 77.3] - - -
oT 61.0% 100.0% 98.3% | 359 100.0 84.1 - - -
AD 0.10mm 2.12mm  0.27 mm 37.7 619 484 - - -
Al 0.10mm 0.53mm 0.23mm 38.1 62.9 48.6| - - -
AT 0.10mm 2.13mm 0.27 mm 32.7 62.0 48.6| - - -
Total - - -
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overlap scoresOverlap(OV), Overlap until first error(OF) andOverlap with> 1.5 mm vessdlOT). These
scores measure the overlap between the segmented cargetid a ground truth centerline derived from
manual segmentations by human experts. The scores arel statbat O indicates complete failure, 50
corresponds to a result within the human inter-observaabiity and 100 is a perfect result. The overlap
scores for our algorithm and for each of the 16 data sets asepted in Tablé(a). A first observation is
the nearly complete segmentation of the target vessels; than 98% are on average segmented. This is
also reflected in the high overlap scores, with an averag®.6f®r the OV score, i.e., significantly better
than the human inter-observer variability.

The accuracy scores evaluate the distance to the groumdcienterline. The scores ar@verage distance
(AD), Average distance inside ves$al) and Average distance to the clinical relevant part of a ve$A&).

The distances and the scores are shown in TAblEhe average distance to the ground truth centerline is
0.27 mm which is about half of the (intrinsic) voxel size. 3 also the accuracy the human experts achieve
(average AD score of about 48.5 compared to the human scéf.of summary of all scores is presented
in Table3.

6 Conclusions

Our goal in this work is to produce a complete segmentatiotheftarget coronary vessels regardless of
data quality or artifacts, and thereby achieve a good catigrescore. This ambition is reflected in the
high overlap scores, but also in the interaction (clicks eadnections) and time that were spent to get
accurate segmentations also at the very distal parts ofabsels. The distal parts are of lesser importance
from a clinical perspective and it is possible to achievaicélly relevant results with less interaction and
in less time than in the current contest setting. In termseoterline accuracy, human expert performance
is achieved with our approach. This can largely be attributethe precision of the multiple hypothesis
tracking algorithm which segments the major part of the @ssOne can also remark that the high spatial
accuracy was obtained although the data have been subshhypkefactor 2, confirming the observation
that the intrinsic resolution is not as high as indicatedHeydriginal 513 image volumes.
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